60454300

@ CONTROL DATA
CORPORATION

NOS VERSION 1
INTERNAL
MAINTENANCE
'SPECIFICATION

VOLUME 1 OF 3

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70 |

MODELS 71, 72, 73, 74

6000 SERIES

SW-39

REVISION RECORD

REVISION

DESCRIPTION

A

Manual released., Manual reflects NOS 1.3.

(06/26/78)

B

Revised to update manual to NOS 1.4 and to make

(08/03/79)

typographical and technical corrections. New

features documented in this manual include: extended

character set/print train support; expanded ECS

status; on-line ECS diagnostic support; retry on

time/SRU limit; IAF enhancements; deadstart from mass

storage; CYBER 170 Model 176 support; extended TIM

function; 885 Disk Storage Subsystem support; task

initiated K.DUMP; TAF internal XJP trace; LIBTASK

enhancements; TAF CYBER Record Manager support; and

TAF/COBOL interface enhancements. This revision

obsoletes all previous editions.

Publicatiom ‘Mo,
60454300

Address comments concerning this
manual to:

REVISION LETTERS |, O, Q AND X ARE NOT USED

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

© 1978, 1979
Control Data Corporation or use Comment Sheet in the back
Printed in the United States of America of this manual

ii

PREFACE

The Network Operating System (NOS) was developed by Control Data
Corporation to provide network capabilities for time-~sharing and
transaction processing, in addition to local and remote batch
processing, on CONTROL DATA CYBER 170 Series Computer Systems;
CDC CYBER 70 Series, Models 71, 72, 73, and 74 Computer Systems;
and CDC 6000 Series Computer Systems.

AUDIENCE

This internal maintenance specification (IMS) provides the
systems analyst with detailed internal documentation of NOS.
Included are detailed descriptions of system routines and the
system interfaces, tables, and flowcharts of these routines.

Some user interfaces are mentioned, but these are fully described
in other NOS manuals.

CONVENTIONS

Extended memory for the CYBER 170 Models 171, 172, 173, 174, 175,
720, 730, 750, and 760 is extended core storage (ECS). Extended
memory for CYBER 170 Model 176 is lLarge central memory (LCM) or
large central memory extended (LCME). ECS and LCM/LCME are
functionally equivalent, except as follows:

e LCM/LCME cannot link mainframes and does not have a
distributive data path (DDP)capability.

e LCM/LCME transfer errors initiate an error exit, not a
half exit. Refer to the COMPASS Reference Manual for
complete information.

The Model 176 supports direct LCM/LCME transfer COMPASS
instructions (octal codes 014 and 015). Refer to the COMPASS
Reference Manual for complete information.

In this manual the acronym ECS refers to all forms of extended
memory on the CYBER 170 Series. However, in the context of a
multimainframe environment or DDP access, the Model 176 is
excluded.

In this manual, the order of importance of headings is denoted as
follows.

LEVEL 1 HEADINGS ARE FULL CAPS AND UNDERLINED

LEVEL 2 HEADINGS ARE FULL CAPS

Level 3 Headings are First-Capped and Underlined

Level 4 Headings are First-Capped

Conventions for central memory word formats are as follows:

60454300 B i

e Cross-hatching indicates a field is not used by or is
However, CDC

not applicable to a function processor.

reserves the right to assign these fields to system use

in the future.

e Fields reserved for system use are so labeled.

e Fields labeled with mnemonics indicate a specific

parameter must be inserted (generally described after

the word format).

@ Fields with numeric identifiers indicate the actual
value that is used or returned for a particular function.

RELATED PUBLICATIONS

For further information concerning CYBER 170, CYBER 70,
Series Computer Systems, the NOS time-sharing systems, and the

user interface for NOS, consult the following manuals.

Control Data Publication

Publication No.

CYBER 170 Computer Systems Reference Manual
CYBER 170 Computer Systems

Models 720, 730, 750, and 760

Model 176 (Level B)

CYBER 70/Model 71 Computer System Reference
Manual

CYBER 70/Model 72 Computer System Reference
*Manual '

CYBER 70/Model 73 Computer System Reference
Manual '

CYBER 70/Model 74VComputer System Reference
Manual

Modify Reference Manual

Network Products
Interactive Facility Version 1 Reference Manual

Network Products
Transaction Facility Version 1 Reference Manual

Network Products
Transaction Facility Version 1 User's Guide

Network Products

Transaction Facility Version 1
Data Manager Reference Manual

60454300 B

60420000

60456100

60453300

60347000

60347200

60347400

60450100

60455250

60455340

60455360

60455350

and 6000

iv

Control Data Pubticétion Publication No.

Network Products

Transaction Facility Version 1

CYBER Record Manager

Data Manager Reference Manual , 60456710

Network Products , .
Network Access Method Version 1 Reference Manual 60499500

Network Products
Network Access Method Version 1

Internal Maintenance Specification 60490110
Network Products _ .

Remote Batch Facility Version 1 Reference Manual 60499600
NOS Version 1 Installation Handbook - . 60435700
NOS Version 1 Operator's Guide 60435600
NOS Version 1 Reference ManuaL.VoLUmé 1 60435400
NOS Version 1 Reference MénuaL‘VoLume s ‘ 60445300

NOS Version 1 System Maintenance. Reference Manual 60455380
NOS Version 1 System Programmer's Instant 60449200

NOS Version 1 Time—-Sharing User's Reference Manual 60435500

NOS Version 1 Export/Import Reference Manual 60436200
TAF/TS Version 1 Reference Manual 60453000
TAF/TS Version 1 User's Guide 60436500
TAF/TS Version 1‘Data Manager Reference Manual 60453100
TAF/TS Version 1 CYBER Record Manager 60456700
Data Manager Reference Manual

6400/6500/6600 Computer System Reference 60100000

Manual

DISCLAIMER

This product is intended for use only as described

in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or
undefined parameters.

60454300 B

CONTENTS

- P s S vE) W S MR D G M S R e e e S . S W M W B G A P SN Y R ER W NP R e S MR AR T S R S R WS WS W S S RS WD D WD WD S W SR S @D e

SECTION 1 INTRODUCTION
Hardware Overview
Central Processor Unit
Peripheral Processors
Central Memory
Extended Core Storage
Software Overview
Central Memory Organization
Control Points
Control Point Concepts
Subcontrol Points
Special Control Points
Job Rollout
Storage Moves
Job Field Length
Program/System Communication

UL NP N NI JEPSIE N NI N W NN N WL N N (. T N N N Y
] R
DO LN NNCOC DS PF P WKW S

Program Recall -10
Periodic Recall -10
Automatic Recall -10
SECTION 2 CENTRAL MEMORY AND TABLES 2-1
Central Memory Resident 2-2
Central Memory Layout 2-2
Pointers and Constants 2-4
Control Point Area 2-11
PP Communication Area 2-18
payfile Buffer Pointers 2-18
Central Memory Tables 2-19
Equipment Status Table (EST) 2-19
Formats
Mass Storage Devices 2-19
Nonmass Storage Device 2-19
(3000 Type Equipment)
Equipment Codes 2-21
File Name/File Status (FNT/FST) 2-22
Entry
File in Input Queue " 2~22
File in Print Queue 2-22
File in Punch Queue 2-22
File in Rollout Queue 2-22
File in Timed/Event Rollout 2-22
Queue _ '
Mass Storage Files Not in 2-23
Input, Print, Punch, or
Rollout Queue
Magnetic Tape Files 2-23
Fast Attach Permanent Files 2-23
File Types 2-25
Files in Queues 2-25
Special Queue Files 2-25
Other Files 2-25
Job Origin Codes 2-25
Mass Storage Allocation Area 2-26
Mass Storage Table (MST) 2-27
Track Reservation Table (TRT) 2-30
Word Format 2-30

60454300 B vi

SECTION 3

60454300 B

Track Link Byte (Format 1)
Track Link Byte (Format 2)
Machine Recovery Table (MRT)
Wword Format
Job Control Area (JCB)
Libraries/Directories
Resident CPU Library (RCL)
Resident PPU Library (RPL)
PPU Library Directory (PLD)
CPU Library Directory (CLD)
User Library Directory (LBD)
System Sector Format
Standard Format
Direct Access File System Sector
Format
ECS Direct Access Chain
Rollout File
System Sector
File Format
Job Communication Area
Exchange Package Area
Error Flags '
Mass Storage Label Format
Device Labél Track Format
Device Label- Sector Format

- Multimainframe Tables

Intermachine Communication Area
MMF Environment Tables
MMF DAT Track Chain (ECS)
MMF ECS Flag Register Format
Device Access Table (DAT) Entry
Fast Attach Table (FAT) Entry -
Global ; :

PFNL Entry Format - Global

PPU Memory Layout
PPO - System Monitor (PPU Portion)
PP1 - System Display Driver (DSD)
Pool Processors

Disk Deadstart Sector Format

MTR/CPUMTR

CPU and PP Monitors
MTR Functions ‘ _
' Check Channel

CCHM (3) -

DCHM (4) - Drop Channel

DEQM (5) = Drop Equipment

.DFMM (6) - Process Dayfile Message

SEQM (10) - Set Equipment Parameters

PRLM (11) - Pause for Storage
Relocation

RCHM (12) - Reqguest Channel

REMM - (13) - Request Exit Mode

REQM (14) - Request Equipment

ROCM (15) = Rollout Control Point

RPRM (16) - Request Priority

RJSM (17) - Request Job Sequence
Number - - -

2-30
2-30
2~31
2=31
2-32
2-32
2-32
2-33
2=-33
2=-33
2-34
2=-35
2=35
2=-37

2-39
2-40
2~40
2-41
2-42
2=43
2-46
2-47
2=47
2=47
2-48
2-438
2-49
2-50
2-51
2=51

2=52
2-52
2-53
2-53
2=54

NN
[I |
v
[e QR Y,]

WNWWWWWWWWW
I
= 00V OVOVOVO-—=-—

1 L}
o

WWWWWW
[
A
coo0ooo0o0O0o

vii

RSTM (21) - Request Storage
DSRM (23) - DSD Requests
ECXM (24) - ECS Transfer
TGPM (25) - IAF/TELEX Get Pot
TSEM (26) - Process IAF/TELEX Request
DEPM (27) - Disk Error Processor
DRCM (30) - Driver Recall CPU
SCPM (31) - Select CPUs Allowable
for Job Execution

WWWWWWWW
]

e) ad e - -

[L JP QT S N G W G §

EATM (32) - Enter/Access System 3-12
Event Table
CPUMTR Functions : 3-12
ABTM (36) - Abort Control Point 3-12
CCAM (37) - Change Control Point 3-12

Assignment
CEFM (40) - Change Error Flag
DCPM (41) - Drop CPU
SFIM (42) - Set FNT Interlock
DTKM (43) - Drop Tracks
DPPM (44) - Drop PP
ECSM (45) - ECS Transfer
RCLM (46) - Recall CPU
RCPM (47) - Request CPU
RDCM (50) - Regquest Data Conversion
IAUM (51) - Interlock and Update
ACTM (52) - Accounting Functions
RPPM (53) - Request PP
RSJM (54) - Request Job Scheduler
RTCM (55) - Request Track Chain
SFBM (56) - Set File Busy
STBM (57) - Set Track Bit
UADM (60) - Update Accounting and
Drop

N L DL W GGG W
R

- ed D) ad D D wd D ed =D D ed e ed ad D

PR PEDPUWUUWUWWWWNNN

SPLM (61) - Search Peripheral Library 3-14
JACM (62) - Job Advancement Control 3-15
DLKM (63) - Delink Tracks 3~-15
TDAM (64) - Transfer Data Between 3-15
Message Buffer, Job
TIOM (65) - Tape 1/0 Processor 3-15
RTLM (66) - Request CPU Time Limit 3-15
LCEM (67) - Load Central Program 3-15
CSTM (70) - Clear Storage 3-16
CKSM (71) - Checksum Specified Area 3-16
LDAM (72) - Load Disk Address 3-16.
VMSM (73) - Validate Mass Storage - 3-16
~PIOM (74) - PP 10 Via CPU 3-16
MXFM (76) = Maximum Function Number 3-16
MTR Functions to CPUMTR ' 3-16
(0) - RA Request 3-16
ARTF (1) -~ Advance Running Times 3-17
IARF (2) = Initiate Autorecall 3-17
EPRF (3) - Enter Program Mode 3-17
Request

MRAFP (4) - Modify RA 3-17
MFLF (5) - Modify FL 3-18
SCSF (6) - Set (Restore) CPU Status 3-18
SMSF (7) - Set Monitor Step 3-18

60454300 B _ Vi

SECTION 4

SECTION 5

60454300 B

CMSF (10) ‘= Clear Monitor Step

ROLF (11) = Set Rollout Flag and
Check Job. Advance :

ACSM (12) ‘- Advance CPU Job Switch

PCXF (13) -~ Process CPU Exchange
Request B ’

ARMF (14) = Advance Running Time and
MMF Processing

MREF (15) - Modify ECS RA

MFEF (16) - Modify ECS FL

CPUMTR Structure-

- MTR Structure

Starting MTR at Deadstart Time
CPUMTR/MTR Flowcharts
Real-time Clock
Time Keeping
IDL, IDLT - CPUOD and CPU1 Idle Loops
CPUMTR Segmentat1on
Exchange Jumps
Central Processor Monltor
Monitor Address Register (MA)
Monitor Flag Bit
Central and Monitor Exchange
Jump Instructions
Programming Notes
Flow of Exchanges
Subcontrol Points (SCP).
Transaction Executive
Transact1on SubcontroL Points

PERIPHERAL PROCESSOR RESIDENT (PPR)

PPR/System Interaction
PPR Subroutine Descriptions
NOS PP Naming Convent1ons
Error Messages
Direct Cells
Routine Residence

10D and 1RP

7SE

7EP

PP Resident Flowcharts

Dayfile Message Options
Mass Storage Driver Resident Area

JOB PROCESSING
General Job Processing
Job Flow
Priority Ag1ng
Queues
Rol tlout ScheduL1ng
Scheduler :
Control Statements
Special File INPUT*
Timed/Evernt Rollaout Processing
EESET Macro
DSD and DIS Commands
Description of Timed/Event
Rollout

o R o A T I O A O S
i

NN - 000000 00~ ON =

NN 20O

(SRR RV, RV, IRV, IV, RV, IRV, IV, R, |
1
PR T N L N\ I QI Y

ix

SECTION 6

60454300 B

ROLLOUT Macro
FNT Interlocking and Scheduling
Individual FNT Interlock
GLobal FNT Interlock
FNT Entry Interlock
Job Advancement
Transition State Scheduling
Special Processing
Subsystems
Subsystem Startup
Special Entry Points
ARG= Special Entry Point
DMP= Special Entry Point
RFL= Special Entry Point
MFL= Special Entry Point
SDM= Special Entry Point
ssJ= Special Entry Point
VAL= Special Entry Point
SSM= Special Entry Point
Special RA+1 Requests
Special PP Calls
Intercontrol Point
Communication
SIC Request
RSB Request

JOB FLOW
Job Scheduler - 1SJ
Set Control Point Status (SCS)
Set Job Control (SJC)
Determine Disk Activity (DDA)
Search for Job (SFJ)
Commit Field Length (CFL)
Commit Control Point (CCP)
Assign Job (ASJ)
Schedule Special Subsystem (SSS)
Priority Evaluator - 1SP
Adjust Job Priorities (AJP)
Advance Time Increments (ATI)
Adjust File Priorities (AFP)
Check Event Table (CET)
Check Mass Storage (CMS)
Check if Checkpoint Needed (CDV)
Process Overflow Flags (POF)
Advance Job Status - 1AJ
Begin Job (3AA)
Process Error Flag (3AB)
Translate Control Statement (TCS)
Issue Statement to Dayfle (IST)
Search for Special Format (SSF)
Search for Program Fle (SPF)
Search Central Library (SCL)
Begin Central Program (BCP)
Assemble Keyword (AKW)
Enter Arguments (ARG)
Check for Special Entry Points
(CSE)
Check valid DMP= Call (CVD)
Process Error (ERR)

5-21
5-24
5-24.1
5-24.1
5-24.2
5-24.2
5-24.2
5-24.3
5-24.3
5-25
5-28
5-32
5-32
5-33
5-33
5-33
5-43
5-44
5-45
5-45
5-45
5-46

(%2}
1
S
©° o

| I O I O T

coo0OCOOOCOOOOOOOOO
[
S a8 00 000000000000 =

SECTION 7

60454300 B

Disk Sector

Interrogate.One Character (I0C)
Initialize. Program Load. (IPL)
Request Storage (RQS):

Search Library Table (SLT)

Set System Call (SSC).

Skip to Keyword (STK)
Translate SCOPE Parameter (TSS)
Initialize Direct Cells C(INT)
~Advance to Exit Statement (ATX)
Check Statement Limit (CSL)

Read Control Statement to Address

(RCA)
Read Next ControL Statement (RNC)

. Search Peripheral Library - 3AC

Load Central Program. - LDR
Search for Overlay - 3AD
Load Copy Routines - 3AE
~ Load Central Program (LDC).
Copy MS Resident Program (CMS)
- Set Load Parameters. (SLP). .
Load CM/AD (ECS) Resident Programs
(ccm) v
Mass. Storage. Read Error Processor
(MSR)
Set Program Format (SPF)
Check Program Format (CPF)
Check SYSEDIT Activity (CSA)
Special. Entry Point Processing — 3AF
.Restore Control Point Fields (RCF)
Initialize DMP= Load on RA+1 Call
(IDP)
Process Specwal Processor Request
(PSR) o
Reset Former Job (RFJ)
Start-up DMP= Job (soP)
Set Priorities (SPR) . . .
Transfer Control Point Area Fields
(TCA)
Termination Processing - 3AG
Send Response to Subsystem (SRS)
Check Subsystem Connection (CSC)
Calculate Subsystem Index Positian
(csP)
End User Jobs . (EUJ)
User File Privacy Processing - 3AH
Complete Job - 1CJ .. . |
Job .Rollout Routine - 1RO
Common Deck COMSJRO
RolLlout File System Sector
Job Rollin,= 1RI .

SYSTEM I/0 (MASS STORAGE)

‘Tab:le Linkage

Table Content
Mass Storage ALLocat1on
File Linkage

i

6-72
6-72
6-72
6-72
6-72
6-72
6-73
6-73

. 6=73

6-73
6-78

6-78
6-738
6-78
6-79
6-79
6-79
6-79
6-80
6-80

Coxi

SECTION 8

60454300 B

System Sector _
Disk I/0 From PPs

60P

MASS STORAGE INITIALIZATION AND RECOVERY

Initialize I/0 Operation Via SETMS
Macro
1/0 Operation and Error Processing
End Mass Storage Operation
General Programming Considerations
Storage Move
Random 1/0
Switching Equipments
SETMS, ENDMS Sequences Al lowed
bual, Shared, and Multiple Access
Seek Overlap - 6DI Driver
MMF Operation of Seek Overlap
Non-MMF Operation of Seek Overlap
Flowcharts from 6D0I Driver
DDP/ECS Driver

Mass Storage Manager
Initialization and Recovery Routines

MSM

MSM

Recover Mass Storage (RMS)
Preset
Read Device Labels
Check and Recover Devices
Call REC into Execution
Check Mass Storage (CMS)
Preset)
Read Device Labels
Check and Recover Devices
Check for Initialization
Requests
Count Active Families
System Recovery Processor (REC)
Mass Storage Recovery in MMF
Environment
Overlays
Overlay 4DA/RDA
Overlay 4DB
Overlay 40DC
Overlay 4DD
Overlay 4DE
Overlay &4DF
Overlay 4DG
Overlay 4DH
Overlay Load Addresses

Device Checkpoint
On-Line Reconfiguration of RMS

Routine RDM

Function 1 - Search for
Qutstanding Requests
Function 2 - Replace Unit

Function 3 - Add Unit
Function 4 - Delete Unit
Function 5 - Clear Reqguest
Function 6 - Ignore Processing
of Dbevice
Device Redefinition Logic Flow

00 00 00 00 00 00 OO0 00 OO
]
N =2 O

xii

SECTION 9

SECTION 10

SECTION 11

SECTION 12

SECTION 13

60454300 B

COMBINED INPUT/OUTPUT

User/CIO Interface

CI0O Memory Allocation

CI0 Initialization Routines

CI0O Error Messages and Routines
2CA Subroutines’ .
2CB Subroutines : :
Position Mass Storage Routine

CI0 Termination Routines:
Terminal Input/Output Routine TIO
2CI Subroutines

CONTROL POINT MANAGEMENT
Function Processing

CPM 0rgan1zat1on

LOCAL FILES
File Types
Local File Manager
LFM Overlays :
3LA - Error Processor

3LB =~ Local File Functions
3LC - Equipment Requests

3LD - Common File Functions
3LE - FilLe Disposal Fnctions

3LF = Control Statement File
- Functions
3LG - GETFNT and Pr1mary Funct1ons

RESOURCE CONTROL
Overcommitment
Deadlock Prevention
Overcommitment Algorithm
Resource Files
Resource: Satisfaction
Resource Assignment Counts
Resource Executive
Control Statement Processing
Assignment Statements
Resource DecLarat1on
VSN Association '
External Calls
Resource Assignment
‘Removable Packs
Magnetic Tape
‘COM Subroutine
Preview Display
« Reprieve Processing
Routine QORF E
" RESEX Organization

MAGNET/1MT ,

MAGNET/1IMT Structure

MAGNET Control Point Initialization
MAGNET Initialization
AMT Initialization

MAGNET Run-Time Executive
Routine 1MT

xiii

SECTION 14

SECTION 15

60454300 B

Tape Monitoring
Residency of 1MT

PERMANENT FILE MANAGER

PFM Communication

Permanent File Types

User Numbers Containing Asterisks

Master Devices
Direct Access File Processing
Indirect Access File Processing
File Creation, Deletion
Accessing Files
Catalog/Permit Entries

PFM Structure
Routine PFM
3PA - Main Command Processing
3PB - Save/Replace Processing
3PC - Append Processor
3PD - Attach Processor
IPE - Catalog List Routines
3PF - Define Processor
3PG - Permit/Purge Processor

3PH - Error Processing Routines

3PI - Auxiliary Routines

3PJ - Change Processor

3PK - Device-to-Device Transfer

3PL - Append - Original File
Transfer

3PM - Define Auxiliary Routine

TELEX TIME-SHARING SUBSYSTEM
Introduction
Terminal Operation
Terminal Job Initiation
Terminal Job Interaction-Qutput
Terminal Job Interaction-Input
TELEX Interactive Job Names
Interactive COMPASS Program
Example
TELEX Initialization
TELEX1 - Main Program
Driver Request Queue(s)
Monitor Request Queue(s)
VDPO - Drop Pots (TELEX Routine
DRT)
VASO - Assign OQutput (TELEX
Routine ASO)
VSCS - Set Character Set Mode
(TELEX Routine SCS)
VPTY - Set Parity (TELEX Routine
PTY)
VSBS - Set Subsystem (TELEX
Routine SBS)
VMSG - Assign Message (TELEX
Routine DSD)
VSDT and VCDT TSEM Requests
TGPM Request

13-21
13-30

14=1

14-1

14-5

14-7

14=7

14=10
14-10
14=11
14-12
14-13
14=17
14=-20
14-20
14=24
14=25
14-25
14=-26
14-27
14-28
14=-29
14-29
14-30
14-30
14-30

14-31

15-1
15-1
15-3
15-4
15-6
15-7
15-10
15-10

15-11
15-17
15-21
15-23

15=-24.

15-24
15-24
15-25
15-25
15-25

15-26
15-26

Xiv

SECTION 16

60454300 B

"Terminal Table '
Transaction Word TabLe
Pot Link Queue
Internal Queues (TRQT)
“Reentry Table '
Table of Reentry :Routine Parameters
(TRRT) ,
Queue Processing
TELEX Routines '~ |
TELEX2 - Termination Overlay
Multiplexer Driver
Driver Initialization (1TD)
Reentrant Routine Returns
Process Subroutines
1TA TELEX Auxiliary Rout1ne
Group Request :
Single Request
1TO = TTY Input/Output Routine
Additional Considerations
SALVARE - TELEX Recovery File

TRANSACTION FACILITY (TAF)
TAF Overview
TAF Initialization
Subcontrol Point Table
Communication Blocks
Active Transaction List
Terminal Status Table
TOTAL Data Manager Initialization
TAF CRM Data Manager Initialization
Task Library Director
Files Used by the Transaction
-Subsystem
NETWORK File
DBID/TDBID/CDBID Files
Procedure Files SYPR, xxPR:
xxJ File
EDT/DPMOD Files
TASKLIB/xxTASKL Libraries
Journal Files
ERPF File
Trace Files
xXxTLOG File
Special Reserved Files
Transaction Executive
Subcontrol Point Program Requests
SCT - Schedule Task
DBA - Data Base Access
~TOT - Enter Request into Total
Data Manager Queue

AAM - Enter Request Into TAF CRM AAM

" Queue

CTI - Ccall Transact1on Subsystem
Interface: *

Send Terminal Output

Task Journal Request

Check for Task Chain in System

Request Code 3 - Terminal Argument
Operation

15=27
15-32
15-34
15-35
15-36
15-36

15-39
15-40
15-41
15-42
15=45
15-51
15-51
15-59
15-60
15-60
15-66
15=-74
15-74

16-1

16-1

16=-3

16-11
16-13
16-16
16=-16
16-18
16-18
16-18

16=-19
16=-19
16-19
16-19
16-19
16-20
16-20
16-20
16-20
16-20
16=-20
16=-20
16-21
16-31
16-31
16-32
16-33

16-32
16-33
16-34
16-34

16-35
16-35

XV

Request Code 6 - Return Terminal 16-35

Status
CMDUMP 16-36
DSDUMP 16-37
KPOINT - Terminal K-Display Command 16-37
Set K-Display To Run from Task 16-37
Submit Job To Batch 16-38
ITL - Increase Time Limit 16-38
I10 - Increase I/0 Limit 16-38
Send Terminal Status Ffunc¢tion to 16-38
Communication Executive
LOADCB - Read Multiple ' 16-39
Communication Block Input
TIM - Request System Time 16-39
MSG - Place Message on Line One. 16-41
RA+1 Request Processing 16-41
Task Scheduling 16-41
RTL - Requested Task List 16-42
CCC - Task Load Request Stack 16-42
Transaction Executive Recovery/ 16-43
Termination
Transaction Subsystem Control Point 16-45
TAFTS/Time-Sharing Executive 16-47
Interface
Transaction Subsystem/NAM Interface 16-48
Transaction Communication Flow 16-49
Terminal Connection To Transaction 16-49
Subsystem
Time-Sharing Executive to TAF 16-49
Login .
NAM to TAF Login 16-50
Input Message Sequence ‘for 16-51

Time-Sharing Executive to TAFTS
Communications

Input Message Sequence for NAM to 16-54
TAF Communications
Task Execution For Input Message 16-55
Downline Message Processing 16-56
Data Manager Communication 16-62
TAF Data Manager 16-63
TAF CRM Data Manager 16-64
Internal Task XJP Trace 16-64
Installation Modification of 16-66
Internal Trace .
TAF Trouble-Shooting 16-67
LIBTASK Utility 16-70
PRS - Preset Routine 16-70
PCR - Process Create Option 16-73
Task Library Directory 16-73
PTT - Process Tell TAF Option 16-75
PIT - Purge Inactive Tasks 16-75
PNP - Process No Parameters 16-76
Product Set Support Monitor Requests 16-83
SFP DOO Request 16-83
CPM (27B) - Get Job Origin 16-83
END - End CPU Program 16-84

- 60454300 B XVi

SECTION 17

60454300 B

ABT .
SCT
cTI
C7lI

BATCHIO

Introdu

BATCHIO

BATCHIO

BATCHIO

BATCHIO
CFF
CPR
CSR
MSG

Me
REQ
SFF
31D
3IA

A

A

A

E

E
E
F
31B
31C
BATCHIO
Psin
Card
Card
- C
1Cb - B
DSD
SEA
POF
LPD
CPD
CRD
ACT
I
cIlB
cosB
CPS
cuL
P MR
RCB
TOF
TOP
QAP - B
IIF
W
LPR
TPF.

Abort CPU Program
Buffer WAITINP
TPSTATUS

BEGIN

ction v
Control Point
Communication
Overview
Manager - 110
- Check for File
- Check Pending Request
-~ Check for Storage Release
- Process Control Point
ssage
- Request Equipment
- Search for File
- 110 Preset BATCHIO
- 110 Auxiliary Subroutines
BF = Assign -Buffer
DR - Assign Driver
NB - Add New Buffer
BP -~ Enter Buffer Point
Information
FP - Enter File Parameters
FT - Enter FET Information
FB - Find Free Buffer
- Load Image Memory
- - Error Processor
Combined. Driver = 1CD
ter Driver Characteristics
Punch Driver Characteristics
Reader Driver
haracteristics
ATCHIO Peripheral Driver
Operator Request
- Set Equipment Assignment
- Process Operator Flag
- Line Printer Driver
- Card Punch Driver
- Card Reader Driver
- Process Accounting
nformation
- Check Input Buffer
- Check Output Buffer
~ Call PP Service Program
- Check User Limit Reached
- Process Message Request
- Read Coded Buffer
- Terminate Output File
- Terminate Operation
ATCHIO Auxiliary Processor
- Initiate Input File (WTIF,
RIF, WFIF)
- Load Print Data (GBPF, PFCF)
- Terminate Print File

16-85
16-85
16-85
16-86

17-1
17-1
17-5
17-5
17-10
17-11
17-16
17-16
17-16
17-16

17-16
17-17
17-17
17-18
17-18
17-18
17-18
17-18

17-18
17-18
17-19
17-19
17-19
17-19
17-20
17-23
17-23

17-25
17-28
17-29
17-29
17-29
17-30
17-30
17-31

17-31
17-31
17-32 -
17-32
17-32
17-32
17-32
17-32
17-33
17-34

17-34
17-35

Xvii

SECTION 18

SECTION 19

60454300 B

PDF - Process Dayfile Messages
(PDMF)

PLE - Process Limit Exceeded

ACT - Accounting (ACTF)

PHD - Generate Lace Card (GLCF)

POR - Process Operator Requests
(PORF) o

CEC - Channel Error Cteanup (CECF)

BCAX - Exit

Error Processing

SYSTEM CONTROL POINT FACILITY
Introduction
CALLSS Macro
Parameter Block
Macro Format
SFCALL Macro
Macro Format
Parameter Block
SFCALL Function Codes
CALLSS Processing
Subsystem/UCP Communications Path
Connection State Table
End Processing
End UCP
End Subsystem
Abort Processing
Hostile User
Communication Ends and Aborts
CPUMTR Processing of SSC Calls
SSF Call Processing
SF.ENDT (06)
SF.READ (10), SF.WRIT (14)
SF.XRED (40), SF.XWRT (44)
SF.EXIT (16)
SF.SLTC (30>, SF.CLTC (32)
SF.SLTC - Set Long~Term
Connection
SF.CLTC -~ Clear Long=Term
Connection
SF.STAT (12)
SF.SWPO (24)
SF.REGR (02)
SF.LIST (34), SF.XLST (42)
SF.SWPI (26)

QUEUE PROTECT, QFM UTILITIES
Preserved Files
Queued Files
IQFT Entry
Queued fFile Entrance
Queued File Removal
Queued File Recovery
Dayfile Recovery
Recovery Processing
Equipment Section
Queue File Manager (QFM)
Queue File Supervisor (QFSP)

17-35

17-35
17-35
17-35
17-35

17-36
17-36
17-36

18-1
18-1
18-1
18-2
18-3
18-4
18-4
18-5
18-6
18-7
18~7
18-38
18-9
18-10
18-10
18-11
18-14
18-14
18-15
18-17
18-17
18-18
18-18
18-19
18-20
18-20

18-20

18-20
18-21
18-22
18-22 .
18-25

19-1
19-1
19-1
19-2
19-2
19-3
19-3
19-4
19-5
19-5
19-6
19-10

xviii °

SECTION 20

SECTION 21

60454300 B

QDUMP/QLOAD Utility Control Words
Queue Recovery (QREC) Utility
QLIST Utility

QMOVE Utility

QLOAD Utility

LDLIST Utility

ADUMP Utility

DFTERM Utility

DFLIST Utility

FNTLIST Utility

QALTER Utility

ACCOUNTING AND VALIDATION

Account dayfile

SRU Algorithm
AAD Routine
AIO Routine
CPT Routine
SRU Routine
Accounting CPUMTR Functions
ACTM - Accounting Functions
ABBF (1) Function
ABSF (2) Fuynction
ABCF (3) Function
ABEF (4) Function
ABVF (5) Function
~ ABIF (6) Function
RLMN - Request Limit
TIOM - Tape I/0 Processor
UADM - Update Control Point Area
Validation Files
Tree-Structure Files
COMSSFS
MODVAL and Validation Files
VALINDs File
VALIDUs File
User Number Validation Block
Deleted User Numbers
ACCFAM Program
Routine QAV
SUN - Search for User Number
UVF = Update Validation File
IVF - Initialize Validation File
Validation Limits
PROFILE and Project Profile F1Les
Access to PROFILa
PROFILa File :
beleted Charge and Project Numbers
CHARGE Routine
Routine QAU
~Data Base Errors from PROFILE

MULTIMAINFRAME'

MMF Overview

MMF Environment
System Flow
Deadstart

Shared Mass Storage

20-1

20-2
20-4
20-4
20-4
20-5
20-5
20-5
20-5
20-5
20-5
20-6
20-6
20-6
20-6
20-6
20-6
20-7
20-8
20-9
20-10
20-10
20-10
20-14
20-18
20-18
20-19
20-21
20-21
20-21
20-22
20-23
20-23
20-24
20-30
20-30

20~-30 |

20-34

21-1

-21-1

21-2
21-2
21-2
21-3

XX

SECTION 22

60454300 B

Mass Storage Recovery Tables 21-4

TRT Interlocking 21-5
Device Initialization 21-5
Device Unload 21=6
Device Recovery 21-7
Device Checkpoint 21-11
Fast Attach Files 21-12
Permanent File Utilities 21-12
1/0 Queue Protect 21-13
CPUMTR Considerations 21-14
Segmentation 21-14
ECS Interlocks 21-14
TRTI Interlock 21-14
PRSI Interlock 21-14
BTRI Interlock 21-15
MRUI Interlock 21-15
CIRI Interlock 21-15
DATI Interlock 21-15
FATI/PFNI Interlocks 21-15
IFRI Interlock 21=-15
COMI Interlock ' 21-15
CMR Interlock Tables 21-15
PFNL Table 21-15
MST Table 21-16
Interlock Reject Handling 21-16
Inter-Mainframe Function Requests 21-17
Parity Error Processing 21-20
Reporting of ECS Errors 21-22
Operator Interface - DSD 21-23
Machine Recovery - MREC/1MR 21-23
CYBER 170 RAM 22-1
S/C Register Deadstart Display 22-1
List Hardware Registers in Deadstart
Dump 22-1
Routine EDD , 22-1
DSDI 22-8
S/C Register Error Logging 22-10
CYBER 170 Fatal Mainframe Errors 22-11
Group I Errors 22-11
Group II1 Errors 22-12
CYBER 170 Power Failure and Environmental
Bits 22-13
System Flow 22-14
SCR Bit 37 Only Set S 22-14
SCR Bit 36 or ILR Bit 0 Set 22-14
Unhangable I/0 Channel code 22-15
Drivers 22-15
Routine 1ED 22-16
Routine 1TD 22-16
Routines DSD, 1DL 22-16
Qutput Channel Parity Error
Detection/Logging 22-16
65x Equipment 22-16
MTS Equipment 22-17
BATCHIO - Unit Record Equipment 22-17

XX

SECTION 23

SECTION 24

60454300 B

SECURITY
System Access
Secondary User Statements
Security Count
Other User Number Protections
Special User Numbers
User Access Premissions
Special Console Modes
Special Entry Points
$SJ= Entry Point
$SM= Entry Point .
SDM= Entry Point
VAL= Entry Point
Secure System Memory
Prohibit Dumping
Clearing Memory
Other Data Protections
File Access
System File Access

 STIMULATORS

Introduction
Calling STIMULA
STIMULA Control Statement
ASTIM Control Statement
NSTIM Control Statement
Functional Overview
STIMULA
17TS and 1TE
DEMUX
STIMOUT File Format
EST Entries Used for Stimulations
STIMULA EST Entry
ASTIM Entries
NSTIM Entries

Tables Used for CPU/PP Communication

TSCR = Scratch Table

TTER - Terminal Table

TSTX - Session Text Table

TASK Task Table) '

TSPT - Session Pointers

RA Locations (Stimulator Usage)

TCWD - Table of Control Words
STIMULA Routines

PRS - Preset Routine

TSF - Translate Session File

RSP - Request Session Parameters
RMP - Request Mixed Parameter Input
SSA - Set Session Addresses

STA - Set Task Addresses

IOR - Initialize Qutput Recovery

BSM - Begin. Stimulation

RCO - Recover Output ‘
Description of 1TS/1TE -Routines

PRS - Preset Routine

CTS - Check TELEX Status

ICT - Initialize Control Table

SCP - Start Central Program

23-1
23-1
23-2
23-2
23-3
23-3
23-4
23-4
23-4
23-5
23-6
23-6
23-6
23-7
23-7
23-8
23-8
23-9
23-9

24-1
24-1
24-1
24-1
243
244
24-4
26-4
245
24-6
24-6
24-8
24-8
24-9
24-10
24=11
24-11
24-11
24-11
24=13
24-14
24-14
24-16
24-17
24=17
24-17
264-19
264-19
24-20
24-20
24-20
24-20
24-21
24-21
24-24
24-27
24-27
24-27

XX

SECTION 25

SECTION 26

60454300 B

SSL - Stimulation Service Loop

LGI - Process Login

REJ - Reject Character

TTD - Think Time Delay

WTC - Write Terminal Character

EOL - Process End-of-Line

EOS - Process End of Script

SLI - Source Line Input

GNT - Get Next Task

PET - Process End of Task

OTT - Optional Think Time

SAN - Set Account Number

RTC - Read Terminal Character

HNU - Hung Up Phone

INI - Initiate Input

REG - Process Regulation

Data Flow

Line Speed (LS K-Display Parameter)

Input Speed (IS K-Display Parameter)

Logout Delay (LD K-Display Directive)

Think Time (TT K-Display Parameter)

Think Time Increment (TI K-Display
Parameter

Activation Count (AC K-Display
Directive)

Activation Delay (AD K-Display
Directive)

Repeat Count (RC K-Display Directive)

Loop On Session File (LF K-Display
Parameter)

Recover Qutput (RO K-Display
Directive)

CHECKPOINT/RESTART
Checkpoint File
Checkpoint = CKP
RESTART

DEADSTART
Hardware Deadstart
Software Deadstart
Startup
0sB
DIO
SET
System Loading
SYSEDIT
MS Recovery Operations
PPR Initijalization '
Recovery
Checkpoint File
Disk Deadstart File

INSTALL
Routine 11IS
Function 1 - Validate Install
‘ File
 Function 2 - Initjalize SDF

Function 3 - Complete SDF

24-28
24-28
24-28
24-28
24-29
24-29
24-30
24-30
24-30
24-30
24-31
24-31
24-31
24-31
24-32
24=-32
24-32
24-32
24-33
24-33
24-34

24-35
24=35

24-35
24-36

24-36
24-36

25-1
25-1
25-7
25-15

26-1
26-1
26-2
26-2
26-4
26-4
26-4
26-6
26-7
26-8
26-9
26-10
26-11
26-11
26-11
26-12

26-13
26=14

Xx1ii

SECTION 27

SECTION 28

SECTION 29

SECTION 30

SECTION 31

SECTION 32

SECTION 33

60454300 B

Function 3 - Complete SDF
Installation

Function & - Process Mass Storage
Error

DISPLAY ROUTINES DSD, D
Dynamic System Display
Structure of DSD

Programming Consider
Routine 1DS

DIS Display Program
Structure of DIS
Overlay Residency an

CENTRAL PROGRAMMABLE K
tonsole Communication
Display Screen
Display Programming’
Keyboard Input
K-Display Standards
K-Display Entries
K-Display Format
Sample Program

LOCATION-FREE ROUTINES
Common Deck COMPREL
Common Deck COMPRLI
Loading Zero-Level Over

PRODUCT SET INTERFACE
SCOPE Function Processo
SFP Structure
STS Request
Function 01
Function 02
Function 03
MSD Request
PFE Request
ACE Request
PRM Request
Special Request Process
Error Processor
Monitor Call Errors
DOO Request
FIN Request

NETWORK VALIDATION FACI
(Transferred to NAM IMS

KRONREF, COMMON DECKS,
KRONREF

Common Decks

Common Deck Usage
SYSLIB

EXPORT/IMPORT
Introduction
E/1 200 Programs:

Is
(DSD)

ation

d 1oL

DISPLAY

Lays

r

ing

LITY
)

AND SYSLIB

32-1
32-1
32-2
32-3
32-13

33-1

33-1
33-1

Xxx11ii

SECTION 34

60454300 B

E/1 200 Overview
Export/Import Communication Areas
Function/Status Table
Message Buffer
Login Information Table
CPU Interlock Table
Drop Job Table
Password Table
Family Name Table
Export/Import FETs
Program E200CP
INP - Input Data Processor
OUT - Output File Processor
1LS = Export/Import Executive Routine
XSP - Service Processor
Validate User Number (VUN)
Make Initial Job File Entry (MJE)D
1ED - Multiplexer Driver

FILE ROUTING AND QUEUE MANAGEMENT
Introduction
Queued File Controls
Disposed Qutput Validation
Deferred Batch Validation
Security Count Validation
Queued File System Sector
Input File Equivalences
Qutput File Equivalences

Common Input/Output File Equivalences

Queued File FNT/FST
Deferred Route
File Routing Concepts
Terminal Addressing
Alternate Routings
Special File ID Codes
Device Specification
Forms Code
Queued Management Equivalences
Creating a Queued File
Queue Management Routines
COMPUSS
USS - Update System Sector
WQAS - Write Queued File System
Sector
Callers of COMPUSS
DSP - Dispose File to I/0 Queue
QAC - Queue Access
QAC Preset
Function 0O - ALTER
Send to Central Site
(Output Files)
Change Terminal ID (TID)
Change Priority (Output
Files)
Change Forms Code (Output
Files)
Change Repeat Count
Change Spacing Code

33-2

33-9

33-9

33-12
33-12
33-13
33-13
33-14
33-14
33-14
33-16
33-17
33-18
33-21
33-23
33-23
33-24
33-29

34-1
34-1
34-1
34-1
34-2
34-2
34-3
34-4
34-4
34-5
34-6
34-6
34-7
34-7
34-7
34-8
34-8
34-9
34-9
34-11
34-11
34-11
34-12

34-19.
34-19
34=-19

- 34-25

34-33
34-33
34-33

34-34
34-34

34-34
34-34
34-34

xxiv

SECTION 35

SECTION 36

60454300 B

Abort Job -
Evict File
Function 1 ~ GET
Function 2 - PEEK
Function 3 = COUNT
QAC - Key Resident Subroutines
SEJ - Search for Executing Job
SFF - Search for File
VCI - Validate Central Memory
Information
VMI - Validate Mass Storage
Information

REPRIEVE PROCESSING (RPV)
Reprieve Overview
RA+1 Call
Reprieve Functions
Parameter Block
Control Point Area Use
Setup Function
Resume Function
Reset Function
Interrupt Processing for Extended RPV
Terminal Input Requested
Interrupt Flow

PERMANENT FILE UTILITIES
Introduction : »
PFS - Permanent File Supervisor
POC - Process Overlay Call
KIP - Keyboard Processor
CDT - Convert Date and Time
DDE - Determine Default Equipment
OCK - Option Check
OCP - Option Combination Processor
PIE - Process -Initial Entry
SVO - Set Valid Options
PFU - PF Utility Processor
PFU Structure
CAU - Clear PFU Active Flag

CCA - Check Central Address
CFA - Compute FET Address
CFS - Complete FET Status

DCH. - Drop Channel if Reserved

FAR - Force Autorecall

FFE - Final FNT Entry

LDB - Load Buffer

PAR - Pause and Reset Addresses

PDA - Process Direct Access File

RCH. - Request Channel if Not
Reserved

RPP - Recall PP

SAP - Set Addresses for Dump and Load

SAU - Set PFU Active Flag
SBA - Set Buffer Arguments
SCT - Set Catalog. Track
SFC - Set File Complete

.SFF. = Store File Name and FET Address

34-34
34-34
34-35
34-35
34-39
34-39
34-39
34-40

34=-40
34-41

35-1
35-1
35~-1
35-1
35-2
35-5
35-6
35-8
35-9
35-10
35-11
35-12

36-1
36-1

©36-10

36-10
36-10
36-10
36-11
36-11
36-11
36=-11
36-11
36-15
36-15
36-15
36-15
36-15
36-16
36-16
36-16
36=-17
36=-17
36-17

36-17
36-17
36-18
36-18
36-18
36-18
36-18
36-18

XXV

60454300 B

PF

SFT
SOC
STS
UFP
VCA
VME
WIF
PFU
OPN
ACF
RRD
LML

STU
CLU
RCF
CHF
SFL
SEC
cLC
SES
LCT
IAC
DAC
TSU

Set File Type

Store One Character
Store String

Update FET Pointers
Validate Central Address

Validate Mass Storage Equipment

Write Interlock Flag

Common Decks

Open File

Advance Catalog File

Read Data List

Load Main Loop

CATS Position

CATS Write

CATS Read

PETS Position

PETS Write

DATA Position

DATA Write

EMB - Empty Buffer

Set PF Utility Interlock
Clear PF Utility Interlock
Rewind Catalog File

Change File Name

Set File length

Set Catalog Track Interlock
Clear Catalog Track Interlock
Set Error Idle Status
Locate Catalog Track
Increment PF Activity Count
Decrement PF Activity Count
Test PFU Interlock

Utility Programs
Interlocks

Permanent File Activity Count
Permanent File Utility
Interlock

Total PF Interlock

Catalog Track Interltock

PFATC Utility
PFCAT Utility
PFCOPY Utility
PFDUMP Utility

Obtaining the File

Device Selection

File Selection

Selecting a Device to Dump

Writing the Archive File
Archive File Control Words
Archive File Label
Catalog Image Record
Writing the Permanent File
Archive File Termination
Purge After Dump

Interlocking

Error Processing
Reading Catalog Entries
Reading Permit Entries

36-18
36-18
36-19
36-19
36-19
36-19
36-19
3619
36-20
36-21
36-21
36-25
36-28
36-28
36=-29
36-29
36-30
36-30
36-31
36-33
36=34
36-35
36-36
36-36
36-37
36-37
36-38
36-38
36-39
36=-40
36=-40
36-41
36-41
36-42
36-42
36-42

36-42
36-43
36-43
36-46
36-48
36-50
36-54
36-54
36-56
36=-57
36-58
36-60
36-61

36-63
36-63
36-66
36-67
36-67
36-68
36-68
36-69

XXVi

SECTION 37

60454300 B

Reading PF Data
Writing the Archive/Verify
File
PFLOAD Utility
. Loading the File
File Selection
Permits Processing
Data Processing
Catalog
End-of-Load
Archive File Assignment
Transferring Files to Mass
Storage
Interlocking
Activating PFU for Loading
Error Processing
Reading the Archive
File
Errors Reading Control
Words
Writing the Permanent
File

INTERACTIVE FACILITY C(IAF)
Introduction
Terminal Operation
Terminal Job Initiation
Terminal Job Interaction - Qutput
Terminal Job Interaction - Input
Interactive Job Names
Interactive COMPASS Program Example
IAFEX Initialization,
IAFEX1 - Main Program
Driver Request Queue(s)
Monitor Request Queue(s)
VDPO - Drop Pots (IAFEX1
Routine DRT) '
VASO - Assign Output (IAFEX1
Routine ASO)
VSCS - Set Character Set Mode
(IAFEX1T Routine SCS)
VSBS - Set Sybsystem (IAFEX1
Routine SBS)
VMSG - Assign Message (IAFEX1
Routine DSD)
VSDT and VCDT TSEM Requests
TGPM Request
Terminal Table
Network Tables
Pot Link Table .
Internal Queues (TRQT)
Reentry Table (VRAP)
Table of Reentry Routine Parameters
(TRRT)
Queue Processing
IAFEX Routines
IAFEX2 - Termination Overlay
IAFEX4 - IAF/NAM Interface
Connection Establishment

36~70

36-71
36-71
36=76
36-76
36-77
36-78
36-79
36-80
36-81

36-82
36-83
36-83
36-84
36-84

36-84
36-84

37-1
37-1
37-3
37-4
37-6
37-7
37-10
37-10
37-11
37-16
37-21
37-23

37-24
37-24
37-24
37~25

37-25
37-26
37-26
37-27
37-32
37-33
37-35
37-36

37-36
37-38
37-40
37-41
37-42
37-45

XXvii

60454300 B

Command Line Entry
Source Line Entry
Input to a Running Program
Qutput Processing ’
Session Termination
1TA IAFEX Auxiliary Routine
Group Request
Single Request
170 - Terminal Input/Output Routine
Additional Considerations
SALVARE -~ IAFEX Recovery File

37-45
37-46
37-46
37-46
37-47
37-48
37-48
37-49
37-54
37-62
37-62

xxviii

.
-

[P P N W 4
| I I | [|
W N = -

INWULWUWUWWHWHWW
| I T I T I [IR |
0O~NNOWVIHUWN -

11
PNV N = = 2l = O
N=20DVONOOUVMEWN-0O

WWWWHWHWHWHWHWWHWWNW

W
U
nN
W

[I R N I |
Voo ~NOUVH W=

N R AT

60454300 B

FIGURES

System Equipment Configuration

Central Memory Storage Layout ExampLe
RA+1 CIO0 and Request Calls

Graph of CM Time Slice and CPU Time Slice

System Interaction

System Interaction

Monitors Interaction

CPUMTR Entry Points From Exchange Packages
Main Loop for MTR

Process Time Dependent Scanners

AVC Advance Running Times

JSW - Process CPU Job Sw1tch1ng (CPU Slot
Time)

PPL - Process PP Recalls

DSD PP Function Request

HNG - Hang PP and Display Message

FTN - Process Monitor Function

cCcP Check Central Program

CPR - CPUMTR Request Processor

XCHG - The CPU with CEJ/MEJ Not Available
CPUMTR Return Points

MTR - Exchange Entry From A CPU Program
CHECK - For System CP Request

Process - RA+1 Requests '

PMN - Exchange Entry From MTR

PPR - Exchange Entry for Pool PPs

PRG - Exchange Entry for System CP (Program
Mode CPUMTR)

Pool PP Request

PP MTR

Program Request

System CP Program Mode

CPUMTR Running in MM Activates CP12

PP3 Requesting Function from CPUMTR
CPUMTR Processing PP Request Activates
Control Point 14

MTR Switches Control Points

CPUMTR Activates Control Point 10

Control Point 10 Calls CIO _
CPUMTR Calls CIO, Activates Control Point 16
CIO Runs to Completion and MXNs to Monitor
PP4 Issues DTKM via MXN ‘
System Control Point Processing

System Control Point XJ (MA) to CPUMTR
Subcontrol Point Field Length

r

System Interaction = PPR

1RP - Restore PPR

PP Resident (PPR)

Peripheral Library Loader (PU)
Process Monitor Function (FTN)
Reserve Channel (RCH) -

Send bayfile Message (DFM)
Execute Routine (EXR)

Set Mass Storage (SMS)

3-32
3-33
3-36
3-38
3-39
3-40
3-42
3-43
344
3-45

3-46
3-57

3-63
3-64
3-65
3-66
3-66
3-67
3-68
3-69

[|

200 ~NHN-=20

F AR Al TR R R
1
NN = s W

XXX

FIGURES (Continued)

5-1 General System Flow 5=2
5-2 Read Card Reader 5-3
5-3 1SJ Prepares a CP for the Job 5=5
5-4 1AJ Starts the Job 5-6
5-5 Job Creates Local File 5=6
5-6 Job is Rolled Out 5~-8
5-7 Job is Rolled In (From Rollout) 5-9
5-8 Job Completes 5-10
5-9 Typical Queue Priority Scheme 5-13
5-10 Control Statement Processing 5-17
5-11 fField Length of Loaded CPU Request Processor 5-31
5-12 DMP= Processing (1AJ Calls 1RQ) 5-34
5-13 1AJ Calls LDR to Load DMP= Program 5-35
5-14 1AJ Calls 1RI to Restore the Job 5-36
5-15 General Flow 5~-37
5-16 Pass 1 (Job Flow Has Come to a DMP Control

Statement) 5-38
5-17 Pass 2 5-39
5-18 Pass 3 5-40
5-19 Pass 4 5=-41
5-20 Pass 5 5-42
6-1 1SJ Main Loop SCJ 6-5
6=2 SFJ - Search For Job 6-10
6-3 1SP - Main Program 6-16
6-4 1AJ Interaction . 6-21
6-5 1AJ Major Overlay Memory Layout 6-22
6-6 1AJ - Advance Job 6-23
6-7 3AA - Begin Job 6-36
6-8 3AB - Process Error Flag 6-45
6-9 TCS - Main Routine ’ 6-55
6-10 IST - Issue Statement 6-59
6-11 SCL - Search Central Library 6-61
6-12 BCP - Begin Central Program 6-66
6-13 ERR - Error Processor 6-71
6-14 INT - Initialize Direct Cells 6-74
6-15 1CJ - Complete Job : 6-85
6-16 TR0 - Rollout Job 6-92
6-17 1RI - Rollin Job 6-97
7-1 RMS File Structure 7-9 .
7-2 Rollout File System Sector 7-10
7-3 bual-, Shared- and Multiple-Access

Configurations =17
7-4 MS Driver Core Map 7-22
7-5 PRS - Preset 7-23
7-6 LDA - Load Address 7-24
7-7 DSW - Driver Seek Wait 7-25
7-8 EMS - End Mass Storage 7-26
7-9 RDS - Read Sector 7-27
7-10 WDS - Write Sector 7-28
7-11 FNC - Issue Function . 7=29
7-12 DST - Check Drive Status 7-30
7-13 6DP - DDP/ECS Driver 7-32

60454300 B X X X

]
B AN LA RSO NODWN -

00 0o 00 00 00 Co C0 00 00 00 00 OO0 OO0 OO Oo
|
VIS WWN 2O

OO0 VOOV YOYVWOOVOVOVOo
]

_ e e A D VN VSN

PAND

0 O
)

-
[o V)]

9-25
9-26
9-27
9-28

60454300 B

FIGURES (Continued)

Recover Mass Storage (RMS)
Read Device lLabels’ (RDL)
Check Active Devices '
Check Device Status (CDS)
Recover Devices (RCD)
Check
Check
Clear
Check
Check
Overlay 4DA/RDA

Initialize Dayfiles (IDF)
Initialize Device Status (IDS)
MSM Load Map

Write TRT (WTT)

Mass Storage

Active Devices (CAD)

Inactive Devices (CID)
Unavailable Devices (CUD)
Initialization Requests (CIR)

User/CI0 Interface

CI0O PP Memory Allocation

CI0O - Main Overlay

CIO1/IRQ - CIO Initialization
SAF~ Search for Assigned File

EFN
SFS
CFA
cBP
PFN
ERR
ERR
ISR

EVF/EPF - 2CA Subroutines to Evict a Mass

Enter File Name

Set File Status

Check File Access

Check Buffer Parameters
Process Function

Process Error

Error Processor (ZCK)

Identify Special Request (2CA)

Storage or Permanent File

2CB
LDB
WCB
EOF
EOR
CPR
PMS
UFS
IOF
CFN
TIO0
PMT
MER
ubpT

Read Mass Storage
Load CM Buffer

Write Central Buffer
Process EOF

Process EOR

Complete Read

and Function Processor Return

Update File Status

Set IN = OUT = FIRST

Complete Function ‘

Terminal Input/Output

Magnetic Tape Operation

Magnetic Tape Executive Request
Unit Descriptor Table Read/Write

ON2aNOWNDO

VOV0 VOOV OVOVOOVOOVOOOo
[IR I | i 1

WWW NN 2 2230000 =
wmi W o

9-37
9-38
9-39
9-40
9-41

- 9-44

9-45
9-46
9-47
9-50
9-52
9-53

XX X1

FIGURES (Continued)

12-1 BRE - Build Resource Environment 12-4
12-2 OCA - Overcommitment Algorithm 12-12
12-3 Resource Demand File Entry (RSXVid) 12-15
12-4 VSN File Entry (RSXVid) 12-16
12-5 DDS - Determine Demand Satisfaction 12-18
12-6 ASSIGN/LABEL/REQUEST - Assignment Control

Statement 12-23
12-7 RESOURC Control Statement 12-28
12-8 VSN Control Statement 12-31
12-9 LFM External Call Processor 12-33
12-10 REQ External Call Processor . 12-35
12-11 PFM - PFM External Call Processor and RRP

- Request Removable Pack 12-37
12-12 RMT - Request Magnetic Tape 12-40
12-13 Request Block (RQ) 12-44
12-14 RESEX/MAGNET Call Block 12-46
12-15 COM 12-50
12-16 ORF - Update Resource Files 12-56
13-1 ICAW Word 13-3
13-2 Unit Descriptor Table Format 13-4
13-3 Overview of MAGNET After Initialization 13-10
13-4 Detailed Map of MAGNET Low Core 13-11
13-5 XREQ Format 13-12
13-6 Interlock Request Word 13-12
13=-7 Channel Status Word 13-13
13-8 MAGNET-1MT Interlock Words 13-13
13-9 Field Length Status Word 13-13
13-10 1MT Function Table Entries 13-14
13-11 MAB and FNH Function Requests 13-15
13-12 RESEX-MAGNET Call Block 13-16
13-13 Preview Display Buffer 13-17
13-14 Table of Processor Strings 13-18
13-15 FST Entry for Tapes 13-22
13-16 EST Entry for Magnetic Tapes ' 13-23
13=-17 1MT Direct Cell Allocation 13-24%
14-1 PFM Overlay Load Map 14-19
15-1 TELEX Interactive Subsystem 15-2
15=-2 Terminal Mass Storage Data Flow 15-3
15-3 Terminal Job Initiation 15-5
15-4 Terminal Job Interaction (Qutput) 15-8
15-5 Terminal Job Interaction (Input) 15-9
15-6 Pointer Addresses 15-12
15-7 TELEX1 Control Loop 15-18
15-8 TELEX1 Processing Modules 15-19
15-9 TELEX1 Memory Map 15-20
15-10 Driver Request Queue Stack 15-21
15-11 Table Relationships 15-38
15=-12 Multiplexer Servicing Concept 15-44
15-13 1TD/2TD Memory Maps 15-46
15-14 MAIN and PRESET Overview 15-48
15-15 . Input/Output Buffers 15-49

60454300 B XX X7 i .

FIGURES (Continued)

15=16 2TD Memory Map <. o R 15=50
15-17 MGR Flowchart R 15-55
15-18 Read Mode Processing Subroutines ’ : 15=-57
15-19 Write Mode Processing Subrout1nes 15-58
15-20 1TA Control Loop: o , 15-62
15-21. Time=Sharing Job RoLtout F1Le C : 15-65"
15=22 1TO I/0 Rout1ne : - ‘ 15-68
16-1 INIT - Injtialize Transaction Executive © 16-8
16-2 Transaction Subsystem Memory Map -TAFTS 16-22
16-3 Transaction Subsystem Memory Map -TAFNAM 16-23
16-4 Transaction Main Loop 16=-26
16-5 TSSC Loop - Task Slicing C ‘ 16-28
16-6 REC - Recovery/Termination : 16-44
16=-7 TAFTS Control Point S 16-45
16-8 TAFNAM Control Point 16-46
16-9 TAFTS/Time-Sharing Executive Relationship 16=47
16-10 Transaction Executive. Us1ng Network Access

o Method 4 16-48
16-11 Trace Buffer Layout 16-68
16-12 LIBTASK Main Flow ’ : . 16-71
16-13 PRS - Preset Routine 16-72
16-14 . PCR - Process Create Option ‘ S 16-77 -
16-15 Library format o 16=-78
16-16 PTT - Process Tell TAF Option 16-79
16=-17 Task Library Format ' 16-80
16=-18 PIT - Purge Inactive Tasks - 16-81
16-19 PNP - Process No Parameters C 16-82 -
17-1- BATCHIO Overview : ' 17=-2
17-2 BATCHIO Central Memory Layout 17-7
17-3 110 - BATCHIO Main Loop ' 17-13
17-3.1 1CD Layout 17-25.1
17-4 1CD Manager : 17-26
20-1 VALIDUs Level=0 Block o ‘ 20-11
20=-2 VALIDUs Level-1 Block 20-12
20-3 VALIDUs Level-2 Data Block 20-13
20-4 User Number Validation Block S 20-15
20-5 Routine 0QAV 20-20
20-6 PROFILa Level-0 Block Format 20-25
2C0-7 PROFILa Level-1 Block Format ' 20=26
20-8 PROFILa Level-2 Block Format 20-27
20-9 PROFILa Level-3 Block Format ' ' 20-28
20-10 PROFILa Level-3 Overflow Block Format 20-29
20-11 Routine 0AU . Do 20~-31
22-1 Dump Tape Header Label 22-6
22-2 - Dump Tape Record Format : S 22=-7
22-3 PP Dump Header Label : 22-8
22=4 PP Dump Format : 22=-8 "

22-5 CM Dump Header Label - . = . 22-9

60454300 B , Xxxiii e

22-6
22~7
22-8

24-1
24-2
24=3
24-4
24-5
24~6 .
24~7
24-8
24-9
24-10
24-11

25-1

25-2
25-3
25-4
25-5
25-6
25~7
25-8

27-1
27=2
27-3
27-4
27=5

28-1
282
28-3
28-4
28-5

33-1
33-2
33-3
33-4
33-5
33-6
33-7
33-8
33-9
33-10

34-1
342
34-3
34-4
34-5

60454300 B

FIGURES (Continued)

CPU Hardware Register Contents
ECS Header Label
Dump Formats

Relationship of Stimulator Modules
Hardware Configuration for STIMULA
Hardware Configuration for ASTIM
Hardware Configuration for NSTIM
TTER Table

RA Location Table

STIMULA Flow

BSM Memory Control

RCO - Output Recovery

1TS/1TE Initialization

1TS/1TE Main Loop

CKP Format

Checkpoint File Structure
Checkpoint Overview

CKP - Checkpoint Main Loop
PRS - Checkpoint Preset
RESTART Overview ‘
RESTART - Restart Main Loop
PRS - Restart Preset

DSD Overview

DSD Main Loop ‘

DSD Release/Request Channel Loop
DIS Release/Request Channel Loop
DIS Main Loop

Sample Keyboard Main Loop

B Display

K Display, Left Screen

K Display, Left and Right Screen

Small Characters, Left and Right Screens

E/I 200 Interaction

€/1 200 Operation

Port Table Layout
Export/Import FETs

E200CP Control Scanner

1LS - Executive Main Control
Function Table Processor

XSP - Main Entry

6671 Port Data Word

1ED Main Loop

COMPUSS - Subroutine USS

DSP Main Routines

QAC Search

VCI - Validate Control Point Information
VMI - Validate Mass Storage Information

22-9
22-10
22-11

24-2
24-3
24-3
24-4
24-12
24=-15
24-18
24-22
24-23
24-25
2426

25-3
25=5
25-8
25-10
25-11
25-15
25-19
25-20

27-2
27-7
27-8
27-9
27-17

28~-7

28-11
28-12
28-13
28-15

33-3

33-4

33-8

33-15
33-19 .
33-25
33-27
33-28
33-30
33-31

34-15
34~-20
34-32
34-42
34-45

XXXiv

35-1
35=-2
35-3
35=4

36-1
36-2
36-3
36-4
36-5
36-6
36-7
36-8
36-9

37-1
37-2
37-3
37-4
37-5
37-6
37-7
37-8
37-9
37-10
37-11
37-12
37-13
37-14
37-15
37-16

60454300 B

FIGURES (Continued)

Interrupt Processing

1AJ Interrupt Processing
1R0 Interrupt Processing
1RI Interrupt Processing

PF Utilities Memory Map
PFS Argument Process1ng
PF Utility FET

PFATC

PFCAT

PFCOPY

PFDUMP

‘Tape Label Format
PFLOAD

IAF Interactive Subsystem
Terminal Mass Storage Data Flow
Terminal Job Initiation

Terminal Job Interaction (Output)

Terminal Job Interaction (Input)
Pointer Addresses

IAFEX1 Control Loop

IAFEX1 Processing ModuLes
IAFEX1 Memory Map - :
Driver Request Queue Stack
Table Relationships

IAFEX4 Overlay

IAFEX Control Point

1TA Control Loop

Time~Sharing Job Rollout File
1T0 1/0 Routine

35-13
35-15
35-18
35=-20

36-6

36-7

36~14
36-44
36-47
36=49
36-51
36-62
3673

37-2
37-3
37-5
37-8
37-9
37-12
37-18
37-19
37-20
37-21
37-39
37-43
37-44
37-50"
37-53
37-56

XXXV

TABLES

1-1 System Resource Times . 1-14
1-2 Job Origins 1-14
3-1 Values of MTR Functions 3-5
3-2 Values of CPUMTR Functions 3-6
3-3 MTR Functions Processed by CPUMTR in

Monitor Mode 3-7
3-4 MTR-CPUMTR Program Mode Requests 3-7
3-5 RA+1 Requests Processed by CPUMTR 3-8
3-6 Exchange Instruction Difference , 3-51
3-7 Control Point/Exchange Package Correspondence 3-53
3-8 System Exchange Packages 3-54
3-9 Monitor, Pool PP, Control Point Relationships 3-56
4-1 Pool PP Memory Map 4=-4
4-2 Direct Location Assignments 4-9
4-3 Symbols Used With Mass Storage Drivers 4-25
6-1 1SJ Tables 6-2
7-1 TRT Lengths 7-3
7-2 Sector Header Byte Contents , 7-8
8-1 Recovery of Shared Device Errors _ 8-35
8-2 Mass Storage Device Recovery During

Deadstart 8-36
8-3 MSM Cross Reference 8-53
9-1 Origin Addresses 9~-4
9-2 TRDO - Table of Read Processors 9-18
9-3 TWTO - Table of Write Processors 9-18
9-4 TFCN - Table of Function Processors 9-19
9-5 Overlay 2CK 9-20
9-6 TREQ 9-31
10-1 CPM Functions 10-2
11-1 LFM Overlays 11-6
13-1 MAGNET Processing Options 13-25.
14-1 Mode Relationships 14-14
14=-2 PFM Functions and Processes 14-15
14-3 Overlays 3Px Caled by 3PA 14-24
15-1 TELEX Constants 15-15
15-2 Driver Request Numbers (Issued to TELEX) 15=-22
15=-3 TSEM Monitor Request Functions 15-23
15=4 Terminal Table Entry Summary 15-32
15-5 Translation Tables Overlays _ 15-43
15-6 USE Block Lengths 15-45
15-7 Addresses and Words 15-51
15-8 Control Subroutines 15-58
15-9 Process Functions 15-59

- 60454300 B XX XVi

60454300 B

TABLES (Continued)

Table and Buffer Pointers
Buffers and Tables
Buffers and Length

Format Control Characters

Connection State Table
UCP/Subsystem Checks
Check User Job Table

Device Access Status
Mass Storage Device Recovery

CHKPT Common Decks
Buffer Assignments

RESTART Common Decks
RESTART Buffer Assignments

Table of Requests
1DS Request

E/I CM Layout

Information Bits

RPV Error Codes, CLasses, Flags

Parameters and Utilities
PFU Function Usage

IAFEX Constants

Driver Request Numbers (Issued to IAFEX1)
TSEM Monitor Request Functions

Terminal Table Entry Summary
Process Functions

16-5
16-10
16-24

17-21

18-9
18-16
18-17

21-8
21-10

25-14
25-14
25-18
25-18

27-11
27-13

33-2
34=36
35-5

36-2
36-13

37-15
37-22
37-23
37-32
37-48

Xxxxvii

INTRODUCTION ' 1

- - - - . . . S . W R L S WD G R P 6 N GRS SR G N N G WD G e G S D G W M A S G G W D S SR D W e e e e

The Network Operating System (NOS) is a group of programs and
subprograms that monitors the input, compilation, assembly,
Loading, execution, and output of all jobs submitted to the
computer. NOS accepts jobs in four ways: time-sharing, Llocal
batch, remote batch, and system console input. NOS controls
CYBER 170 Series Computer Systems, CYBER 70 Series, Model 71,
72, 73, and 74 Computer Systems, and 6000 Series Computer
Systems. . '

Efficient processing of user jobs is the prime objective of the
operating system. This section describes the inherent hardware
characteristics, the basic software elements, and how they work
together to accomplish the prime objective. Figure 1=1 shows the
NOS system equipment configuration.

HARDWARE OVERVIEW

NOS uses peripheral processors (PP) for system and input/output
tasks and one or two central processor units (CPU) to execute

user and system jobs. Central.memory (CM) contains user programs;
system software areas are located at the lower end of central
memory. Extended core storage (ECS) may also be used by NOS.

CENTRAL PROCESSOR UNIT

The CPU performs tasks of a computational nature; it has no
input/output capability. It communicates with other system
components through central memory. Under NOS, the CPU is used
almost exclusively for program compilations, assemblies, and
executions. The CPU makes system requests through a CPU request
register Located at the reference address plus one (RA+1) of the
current program in execution. However, system work that can be
done more efficiently in the CPU is processed there.

PERIPHERAL PRQCESSORS

The system may have up to 20 peripheral processors. The
peripheral processors (identified as PPO, PP1, ..., PPn) are
identical and perform many tasks for requesting programs in
central memory. Each PP consists of 4K, 12-bit, 1-byte words of
memory.

A PP can control input/output, job scheduling, control statement
interpreting, system housekeeping, and other tasks as required.
Tasks are assigned one at a time to each PP by the CPU monitor
(CPUMTR). When an assigned task is completed, the PP signals
the system. CPUMTR waits for this signal before assigning
another task to the PP.

60454300 B 1-1

Each PP is assigned a block of eight words in central memory
resident through which communication with the system is
conducted. This area is referred to as the PP communications
area. Each block contains an input register, an output register,
and a message buffer. :

CENTRAL PROCESSOR UNIT(S)
(SOME CDC MODELS HAVE 2)

CENTRAL
MEMORY
a9kt
OR MORE

I
-r—— T+t T — — — T —
4 [l

] L.] 1] i L 1
MTR DSD
prol |eer| |PP2| |PP3| |PPa| [PPs| [PPe| |PP7| [PPiO| [PP11

l I Ll 1 !] |

1 T
r+~-—7+-—tr-—ttr -t -t —-—t--t- -+
I ; I [| | : ‘:
oEAD- | | | 1 | (cr 1
SANEL | ! 28.5 | LS |
= e ©
. | 1
M 6676 2550 O p
MUX HCP

CONSOLE
* * DISP

TO NETWORK
64 TTY APPLICATIONS
LINES

tSpecial consideration is needed for NOS to execute with 49K of
central memory (refer to the NOS Installation Handbook).

Figure 1-1. System Equipment Configuration

60454300 B 1-2

CENTRAL MEMORY
Central memory words are 60 bits long; each is composed of five

12-bit bytes. Each 12-bit byte in a CM word is numbered O
through 4, from thg Left, as follows.

. at . 3,5' SR »3 S . o

byte O . byte | _ byte’2 byte .3 byte 4

One or more user programs may be in some state of execution
concurrently under NOS. These programs are stored in central
memory in an assigned user area called control points; a set of
system components necessary for the operation of the system is.
also stored in central memory, forming central memory resident
(CMR). Central memory 9s accessible by all PPs and CPU(s) and
forms the communication link between all processor units in the
computer system.

CMR contains system communication areas, system tables, CPU
resident routines, the library directory, and information about
each job currently in execution. ' : ' '

EXTENDED CORE STORAGE -

Extended core storage (ECS) is a high-speed peripheral storage
device. It is used by the multimainframe software for storage
of common tables since ECS can be accessed by two or more
mainframes. ECS is also used to retain system routines and.
compilers that are called fregquently. It is often used by the
system to move blocks of central memory. This is known as a
storage move of control points and is described later. ECS may
also be used for rolling jobs out of central :memory, and -
user created files, and for direct access of lLarge data arrays
by using the read/write ECS instructions. : :

SOFTWARE OVERVIEW

Under NOS all processing of user jobs is controlled in.central
memory. NOS consists of PP programs, CPU programs, macro
definitions, and symbol definitions. The entire system is -
contained on a magnetic tape file produced by the NOS utility
Modify. Programs in the library file are in source Language
form. Installation options are provided to permit flexible
selection of system features during the assembly and creation of
an NOS deadstart (system initialization) medium. The most
frequently used options are selected during deadstart.

A system monitor is in complete supervisory control of the
hardware system. The system monitor is composed of PP routine
MTR (PP monitor) which operates in PPO, and CPUMTR (CPU monitor)
which is loaded as part of central memory resident (CMR) .

60454300 B 1-3

CENTRAL MEMORY ORGANIZATION

The allocation of central memory is as follows.

low core CMR
CPUMTR
CM library

assigned to
control points
(system/user programs)

v
high core

Low core is allocated to the central memory resident portion of
NOS and executable system programs. The remaining area is
assignhed to centrol points.

CONTROL POINTS

The system can control execution of several jobs at one time.
When placed into CM before execution, each job is assigned a
control point number. Jobs at control points are assigned to a
processor for execution. Each control point area in CMR
contains all the information necessary to process the assigned
job.) : :

Control Point Concepts

Blocks of central memory storage not allocated for system use are
ordered by control point number and assigned to jobs. Each
control point number has a corresponding table in CMR called the
control point ‘area. A control point is not a physical entity,
but rather a concept used to facilitate bookkeeping. The control
point number and the control point area, however, are physical
guantities that do appear in the system.

Under NOS up to 23 (27 octal) control points are possible. 1In an
installation with n control points for user jobs they are
numbered from 1 to n. A job assigned to a control point is
jdentified by its control point number; only one job can be
assigned to a control point at any one time. Once a job is
assigned to a control point, system resources such as central
memory, ECS, channels, equipment, and processors may be assigned
to the control point for use by the job.

60454300 A 1-4

The amount of CM/ECS words assigned to a single control point

is contiguous and an integer multiple of 100B for CM and 10008
for ECS; storage for all control points is not‘necessarily
contiguous. The central memory storage block assigned to the job
at control point 2 is higher than the block far the job at
control point 1, and storage for control po1nt 3 is higher than
that for controt po1nt 2 and s$0 on.

In the Figure 1-1.1 no storage is assigned to control
points 3 and 5; unassigned storage appears between assigned
storage.

low core CMR
CPUMTR

CM library
control point 1

control point 2

Z ///////////////////

control point 4

control point 6

e

v control point 7
high core

Figure 1-1.1. <Central Memory Storage Layout Example

60454300 B ' 1-5

Subcontrol Points

Another feature of NOS is subcontrol points. Basically, the
memory of a regular control point is divided into a number of
distinct blocks. Various applications programs are loaded and
executed in these blocks under the control of an executive
program. The executive manages the subprograms and assigns the
CPU according to priorities it establishes. The executive
program and each subprogram is protected from other subprograms.
This protection is accomplished by the CPU as explained in
section 3. Currently, the transaction subsystem (TAF) uses

this feature.

Special Control Points

In addition to the n control points defined for running jobs,
there are two special control points used for system control:
control point zero and control point n+1.

Control point zero is essentially CPU monitor (CPUMTR) which
controls the memory of the entire machine. Also, some peripheral
equipment can be assigned by control point zero to jobs at other
control points and later returned to the system. Thus, the
control point number associated with an equipment determines
whether the system or the user has control. Similarly, logical
files are associated with user jobs or the system via the control
point number. Files belonging to the system (those assigned to
control point zero) include:

e System dayfile

® Account dayfile

@ Error Log dayfile

e Jobs in the input queue

e Jobs in the rollout queue

e Jobs in the output: queue
CPUMTR uses control point n+1 for certain monitor functions that
might require a lLarge amount of CPU time. For example, the
delinking of tracks in a mass storage allocation table may
require a significant amount of CPU time. Thus, this function
is best done at control point n+t1. While running at control
point n+1, CPUMTR is in program mode, not monitor mode, and can
be interrupted by PP exchange jumps (MXN). However, the CPU

priority of control point n+1 is 100 octal, which is the highest
available.

60454300 A 1-6

Job Rollout

During the course of execution, a job might not remain
continuously at the same control point. It is possible for the
job to be rolled out while it is only partially executed, thus
making CM available for higher priority jobs. When a job is
rolled out, it is not associated with a control point. When it
is rolled back in, it is probably assoc1ated with a controL
point other than its previous control point.

Ppuring the time a job is rolled out, the only table in CMR that
contains information about the job is the file name table entry
(file type rollout). The system periodically updates the
priorities of rolled out jobs and eventually reschedules the job
to a control point.

Storagg Moves

When a job begins or finishes processing, or as jobs are rolled
in and out, CM storage must be reallocated and jobs must be

moved. If a job at a control point requests additional storage,
it may be necessary to move jobs to obtain the required storage.

A request for a reduced field Length (FL or FLE) resets the
FL/FLE size in the control point area; no storage move takes
plLace, unless the field lLength reduction takes place at the last
control point. A request for an increased field length, when
unallocated storage is available and adjacent to the control
point, results in resetting the FL/FLE size in the control point
area; no storage move is required. ’ ' :

If it is necessary to take unallocated .storage adjacent to other
control points to satisfy a request for increased field length,
control points above and below the requesting control point will
be scanned. This scan locates the combination of unallocated
storage blocks that will result in a move of the least amount of
storage.

In figure 1-1.1, if control point 1 needs more storage, it will
be necessary to move control point 2. If control point 6 needs
storage, sufficient unallocated storage may be available to make
a control point move unnecessary. If, however, control point 7
needs additional storage, control points 4, 6, and 7 may be moved
to provide the storage. Added storage always extends the field
Llength upward. ‘ ‘ '

Storage moves are determined by MTR and are performed by CPUMTR.
There are three possible methods used by CPUMTR:

e Use compare/move unit (CMU) if available

60454300 B ‘ 1-7

@ Use ECS block transfers if ECS is available

e Use CPU if previously mentioned hardware is unavailable

Job Field Length

When a user program is assigned a control point, the system
allocates a certain amount of CM to the control point. This
storage is contiguous in memory and is a multiple of 100 octal
words. The block of CM assigned is defined by a starting address

called the reference address (RA) and a word count field length
(FL).

RA user/system
RA+100 communication
FL (CM block assigned)
user
program
RA+FL

The user program is loaded at location RA+100, with the first 100
octal words (RA through RA+77) reserved for system communication.
Once lLoaded, a user program cannot access memory beyond its
boundaries of RA and RA+FL. The CPU uses the RA to convert
addresses to absolute. If the program attempts to read or write
beyond its boundaries, the CPU detects the error and aborts the
job. Since the user program cannot access memory outside its FL,
any area reserved for system communication must be within the FL
of the job. Thus, the first 100 octal locations of each job's

FL are reserved for this purpose (refer to section 2).

PROGRAM/SYSTEM COMMUNICATION

ALl communication with the system is performed by entering a
system request in location RA+1 of the field length. * A user
program may communicate .with the system as described in the
following examples.

e The CPU does not peform input/output. Therefore the user
program sends I/0 requests to the system. This is most
often a request for the PP program CIO. :

e When a user program terminates, it must advise the system
that it may process the next control statement.

.

60454300 B 1-8

If a CPU program wishes to call a PP program it places the PP
program name and arguments in RA+1. If autorecall is desired,
bit 40 is set. If the central exchange jump (CEJ) instruction is
available, the program should use it immediately after placing a
call 9n RA+1. This causes CPUMTR to begin execution immediately.
I1f CPUMTR determines that the RA+1 call should be assigned to a
PP, CPUMTR writes the RA+1 word into the PP input register in
CMR. The name and any .parameters in bits 35 through 0 appear in
the input register exactly as they did in RA+1. Parameters are
passed from a CPU program to a PP program through this parameter
field. The format for the PP communication area is shown in
section 2. ‘

For example, if the PP program CIO is called, CIO finds the

relative address of the file environment table (FET) to be used

in the operation by reading its input register. It can find the

RA of the control point field Length by reading the control point
number from its input register, computing the address of the control
point area, and reading the value of RA from the control point area.
By adding the RA to the relative FET address, CJO0 obtains the
absolute address of the start of the FET.- CIO then reads the
parameters for the I/0 operation from the FET.

MTR continually scans RA+1, in the event that the user's program
does not use the central exchange jump, or the instruction is
not available (CEJ/MEJ disabled). When -an RA+1 call is found,
MTR initiates CPUMTR. ' . : .

The following illustrates an RA+1 call with the FET address.
specified.

59 40 7 0

RA+1 XXX ' 1 | 0] FET address

A system-forced.adto?ecatt without the FET éddress is‘as:foLLows.

59 40 17)

AN

RA+1 XXX 1| . 0 ' o

60454300 B 1-9

Program Recall

The recall program status is provided to enable efficient use of
the central processor and to capitalize on the multiprogramming
capability of NOS. Often, a CPU program must wait for an I/0
operation to be completed before more computation can be
performed. To eliminate the CPU time wasted if the CPU program
were placed in a Loop to await I/0 completion, a CPU program
requests the control point be put into recall status until a
Later time; the CPU may be assigned to execute a program at some
other control point. If there is nothing to do, the CPU executes
an idle Lloop in CPUMTR.

Recall may be automatic or periodic. Autorecall should be used
when a program requests I/0 or other system action and cannot
proceed until the request is completed. NOS does not return
control until the specific request has been satisfied. Periodic
recall can be used when the program is waiting for any one of
several requests to be completed. The program will be activated
periodically so that it can determine which request has been
satisfied and whether or not it can proceed.

Periodic Recall

To enter periodic recall, a CPU program puts the characters RCL
left-justified into RA+1. On encountering the RCL request, the
system assigns the CPU to some other control point. After a
certain interval of time has elapsed, the control point is
restarted and the CPU is again assigned to execute the program at
the control point.

Automatic Recall

If a CPU program makes a request in RA+1 and bit 40 of RA+1 is
set to 1, the control point will be put into automatic recall
after the request has been initiated. Again, the CPU is assigned
to another control point as in periodic recall. 1In this case,
however, the program in recall will be restarted by CPUMTR after
the PP has dropped or issued the RCPM functions. The completion
bit in the FET is never statused. The only criterion for CPU
startup is the RCPM or PP drop (DPPM).

Recall and autorecall are most often used while waiting for CIO
to process an I/0 request. However, any time a PP program is
called from RA+1, with bit 40 of RA+1 set to 1, the control point
will be put into autorecall.

60454300 B 1-10

If bit 40 is set, bits 17 through 0 of RA+1 must contain the
address of a word in the program's field Length called a reply
word. When the PP has completed its function, it will set the
completion bit (low-order bit) in the reply word, and drop or
issue an RCPM. The completion has no basic significance to NOS.

For a call tb Cl1o, the reply word is the first word of a FET.
For other programs the reply word need not be part of a FET.

A CPU program can put itself into autorecall without calling a PP
program by putting RCL left-justified in RA+1 and setting bit 40
of RA+1 to 1. Bits 17 through 0O of RA+1 must contain the
address of a reply word. A program which has already initiated
one or more I/0 operations might go into autorecall in this way,
using the first word of the FET associated with one of the I/0
operations as the reply word. Figure 1-2 shows the formats of
RA+1 for: a normal CIO call; a request for periodic autorecall;
a CI0O call with autorecall bit set; and an RCL call with
autorecall bit set. For periodic recall, a user must issue a
normal CIO call followed by an RCL request. For autorecall,
only one request is required.

Any CPU program making a call to a PP program using autorecall
needs to be restarted by the PP program unless the PP program
intends to drop before the CPU program is started up. Just
setting the completion bit in the pseudoFET word is not enough to
get the CPU program restarted. In addition, the PP routine must
issue the monitor function RCPM (request CPU) to get the CPU
program restarted. Unless a CPU program has queue priority
greater than MXPS 7760B), all calls to. PP programs, with the
exception of CIO, are forced into auto-recall by CPUMTR.

Autorecall initiated by the RECALL macro is treated as follows.
CPUMTR checks the completion bit and if set takes the CPU

out of autorecall. If not set, CPUMTR lLeaves the recall
request (RCLP) in RA+1 and exits. This request is detected
Later by MTR, and CPUMTR is called.

Normally, CPU programs use autorecall for convenience, but only
one request involving autorecall can be processed at one time.
For example, to initiate 1/0 action on several files at once, a
user must employ the periodic recall technique. ALl requests

are issued without recall (using a separate FET for each request)
and then periodic recall is begun. Each time the CPU program is
restarted by the system, it can check all the files for
completion and go back into periodic recall if any are still
incomplete.

60454300 B 1-11

CI0 call

W 7//////////// e O

60454300 A

Figure 1-2. RA+1 CIO0 and Request Calls

1-12

Periodic recall may be used also when a CPU program can initiate
an I/0 request and then perform some computation. In some cases,
the I/0 is completed before the computation; in others, the
computation is done first. The user enters recall only when the
computation is done, and then only if the I/0 is still in
process. . e e _ o

Peﬁiodic recaLL.shouLd ast be used, if possible, to continue
processing while only part of the. data buffer has been read or
written by the I1/0 driver.

The definitions in tables 1-1 and 1-2 are used extensively in
NOS. A graph of CPU and CM time slice (figure 1-3) is provided
to illustrate the relationships between these two concepts.

60454300 B : Ny 1

1
=y
W

TABLE 1-1. SYSTEM RESOURCE TIMES

The priority that governs entry to a control
point from the INPUT or ROLLOUT gueue and also
governs disposition to a printer.

The priority that governs which candidate for
the CPU will access the CPU.
one candidate to another.

The total time period that a control point can
use the CPU without being penalized.

The total time period a job can reside at
a control point without being penalized.

|Penalized means that the gqueue priority in the control point
|area is reduced to the lLower queue priority (LQP) for the

|
|
|
|
|
|
|
|
l
I
I
|
The time period when the CPU is shifted from }
|
|
|
I
|
|
|
|
|
|
lorigin type specified. }

TABLE 1-2. JOB ORIGINS

- - - D D R WS =D P WR S W=

| |
| Source | Origin Type |
| |
R it - |
syoT	System
BCOT	Local batch
EIOT	Remote batch
TXO0T	Time=-sharing
MTOT R Multi-terminal]	

60454300 B 1

14

time
slice

CM / when either the CM or the CPU
time <+ ; time slice occurs, the job is
slice / \ penalized.
penalize job if CPU
/ time slice has not
’ occurred
CcPU)
time - ‘
slice .. penalize job if CM time slice
has not occurred
time
- — CM time
CPU time
CM time increases Linearly with time as long as the job is at a

control point without respect to the use of the CPU.

CPU time increases as a step function with a linear relation only
while the job is actually using the CPU.

Figure 1-3. Graph of CM Time Slice and CPU Time Slice

60454300 B

CENTRAL MEMORY AND TABLES 2

- - - ———— - - S . . W G S WP WD S MM S Nm W e S W M G D AR S e WS SR WW S SD G AR AR SR S AR A e e S em eSS SR

Central memory resident (CMR) is the low end of central memory.
It is reserved by NOS and provides the major coordinating area
for system operation. CMR contains pointers, tables, CPU monitor
(CPUMTR), libraries, and library directories.
The Llength of CMR is dependent upon several factors, including
the number of peripheral processors, the number of control
points, the number of mass storagevdeyices, and others. This
secton gives an overview of the layout of CMR giving the
relative positions of the various parts.of CMR, in addition to
other system defined tables, symbols, and codes. " The CMR part
details:

e Central memory Llayout

e Pointers and constants

e Control point area

e PP communication area

e Dayfile buffer pointers

e Central memory tables

e System sector format

e Rollout file
The following descriptions are also provided:

e Job communication area

° 'Exchange package area

e Error flags

e File types

e Equipment codes

e Multimainframe tables

e PP memory Llayout

60454300 B -2-1

CENTRAL MEMORY RESIDENT

CENTRAL MEMORY LAYOUT

000

077

system pointers and
control words

100

channei{ status table

12

122

status /control registers

123

126

miscelioneous pointers and data

127
.
141
142
L
177
200

{(n+1)%200

(n+2)%200

reserved

channel release table

control point areas

system control point

60454300 A

PP communication area
(pointer in word 002, byte 4)

60454300 B

dayfile buffer pointers

~(pointer ‘in word 003, byte 0)

equipme:n_t- status table (EST)
(pointer inword QO5, byte O)

file name/file status table -
{pointer in word 004, byteO)

~ FNT interlock table
(pointer in word 004, bytel)

CDC CYBER 176
exchange package area

mass storage
allocation area

mass storage tables (MST)

job control area

dayfile buffaers

dayfile dump buffer

ECS/PP buffer .

CPUMTR.

resident peripheral library (RPL)

resident centrallibrary (RCL)

peripheral library directory (PLD)

central library directory (CLD)

system user library directory (LBD)

60454300 8

POINTERS AND CONSTANTS

Q00
Q0!

002
003
004
005
006
007
010
017
020
o021

022
023
024
025
Q26
027
030
03!

032
0'.;5
038
037

040
04}

59

47

35 29 23 17

| S 0

Zeros

fwa resident
PP tibrary

number

of PPUs i

memory
size /100

CPUL,MFLL

fwa PP library

directory

[

ctrl pts

number of

PP comm
area adr

PPCP

da

file
pntr fwa

fwa day
dump buf fer

ile ts

no. excess
day files

DFPP

fwa
FNT

FNT

lwa+ |

i

fwa job control
ared

FNTP,JBCP

fwa
EST

lwa+ |
EST

lwa+| ms
equipment

fwa ECS/PP
buffer

ESTP

fwa mass storage

allocation

fwa user tibrary
directory

LBDP, MSAP

fwa CPU library

directory

fwag COS format
CPU lib directory

v
7K

CLDP

installation area

INOL,INSL

IN7L

7

CMR size
/100

CMRL

system name

v

14

job sequence
number counter

Y

JSNL

v
y

avail ECS
/110008 bio cks

Yt %

available
mem/IOOB

ACML AECL

job
scheduler

CPU
recall

Ts

ECS first
user track

PP/auto job job

-| recall activit switch
user 1000 RA/NQ ECS FL/I0OO
Wi’ for CPO for CPO

MSCL

ECRL

7

julian date (yyddd)

JDAL

0
vt

packed date

(yr~1970,mo,da, hr,mn, sc)

PDTL

time of day (Ahh.mm. ss.)

TIML

date (Ayy/mm/dd.)

DTEL

system title line

system version name

////////////// g

scheduler
cy. Nntvl.

JSCL

1CK recail time

1SP recall time

RPLP,PPUL,
PLDP,NCPL,

Ref Bit No.
f1 0 23-20
19-18
17
16
15
14
13
12
t2 23-12
$3 5-0
t4 5-3
2-0
t5 59-48
6 59

60454300 B

Description

Unused.
CDC CYBER 176 CPU type:

0 = Not a CDC CYBER 176.

1 = CDC CYBER 176 Model A,
2 = CDC CYBER 176 Model B.
3 = CDC CYBER 176 Model C.

Set if 2x PPs are selected.

Set if machine type is CDC CYBER
170.

Set if CMU 1is present.

Set if CEJ/MEJ option is available,
Set if CPUO has an instruction
stack. .

Set if CPU1 is present.

Nonzero if dayfile dump is

disabled. A

"ACCFAM FL/100.

LIBDECK number.
Recovery mode.

Reserved.

Scheduler active flag.

60454300 A

59 47 35 23 17 H o}
042 f1 IPRL
043 12 SSTL
oaa| teLex/1aF| EXEORT/ | saTcHio | wmaGNET | . TAF |sscL
045 |STIMULATOR ,NNTEETRWF‘?;& RBF €DCS MCS
« |MASS STOR-{TRANSACTION|
046 |7GE CONTROLISTIMULATOR reserved
047 reserved
050 reserved IRaddr |PPAL
0Si idle time
0s2 load code MSEL
053 for MS
054 error processors
055
reserved
056 C
os7|cirl point internal to MTR cMCL
CPO ctrli CPO exchange
060 -—13// /////// /Aot assig address ACPL
CPl ctrl | CPl exchan
o8l |14 / ///// //Ipt assig address "
address of PPO
062 »W/////////// exchonge package PXPP
063 first word of PP exchange package
064 reserved
065
zeros ZERL
067
. reserved
073 CPUMTR)
exchange
076 reserved Gddress for MTR. MTRL
CPS
077 EQ CPsSL PS 0 -

Ref Bit No. : Description

t1 59-54 Index for CPU1 multiplier.

53-48 Index for CPUO multiplier,
47-36 . . Secondary rollout sector threshold.
35 ~_Keypunch mode (0=026, 1=029).
34-25 " Unused. -
24 - - System character set mode (0=63,
1=64 character set).
23-12 Assumed conversion mode (2=
_ ASCII/USASI, 3=EBCDIC).
11-6 Assumed 9-track tape density
" (3=800, 4=1600, 5=6250),
5 , Assumed tape type (7-track=0,
9-track=1).
4-0 Assumed 7-track density (1=200,
; 2=556, 3=800).
t2 59-54 Reserved for CDC use.
53 Disable user ECS, .
52 . Disable PF validation.
51-50 Disable MS validation,
49 © Ignore USER statement.
48 . Disable account verification.
47 Disable BATCHIO. =
46 Disable TELEX/IAF.
45 Disable EI200.
44 Disable MAGNET.
43 Disable TAF/TS. ,
42 Disable removable device checking.
41 Disable queue protect.
40 ‘Disable secondary user statements.
39 Disable SCP facility. '
38 _ Disable TAF. g
37 , Disable NAM.
36 Disable RBF. ‘
35 Disable subcontrol .points.
34 ' Disable MCS. ’
33 _ - Disable CDCS.
32-15 " Reserved for CDC use.
14 -ENGINEERING switch.,"
13 Console initial lock status.
12 DEBUG switch.
11-0 Reserved for installation use (local).
F3 59 Set if CPUO is off,
4 59) Set if CPU1 is off.

60454300 B

60454300 B

100
101

102
103
104
105
106
107

110

na-

13
114
1S
le
"7
120
121

122
123

124
125
126

127.

130
13t
132
133
134
138

162
163

177

59 47 ‘ 35 23 7 L 0
CHO CHI CH2 CH3 CH4
CHS5 CHE CHT CH!O CHII
CHI2 CHI3 CH!4 CHIS CHI6

(u%éid) CH20 CH2! CH22 CH23
CH24 CH25 cH26 CH27 CH30
CH3I CH32 CH33 (ur?rsse?i) (ug:l?:d)

seconds milliseconds
reserved
12
3 00000007,
ta
4 3 2 | 0
9 8 7 6 5
14 13 12 I 10
027777 1 E
4 3 2 I 0
9 8 7 6 S
4 13 12 I 10
22777 e E
NI I” i
reserved
reserved
reserved flag register
I8
reserved MXN time M."'!g'&'c‘.“"’:‘. cg';'c":"'i‘m.';ﬂ

count of ECS moves

count of CM moves

rollout count

count of sectors roiled

user commits <+ time

reserved slice with output count of time slices
obs in recall due to
reserved 8P priority exchanges

reserved

DSD - 1DS communicat

ion area

cTIL T

RTCL

PFNL

SCRL
sieL I8

S3eLte

MMFL

EFRL
INWL
sooL
SDIL
sp2L
SD3L
SD4L

Ref

Bit No.,

t1

T2

13

T4

60454300 B

59-56

55
53-48
47-18
17-12
11-6
5-1..

59-48
47-36

59

58

57

56
55-36
35-24

23-12
11-0

Description

‘Channel status table; one byte per

channel, each with the following
bit ‘descriptions.

S Bit ‘ Description
11 Set if channel requested.
10-7 PP number of requesting
PPC .
6 Set if channel not
_ available.
5-0 PP assigned.
Reserved.

Total PF systém interlock.

Request total PF system interlock.

PF activity count.
Reserved.

Default family equipment number.

Alternate family count.
Reserved. .
Word interlock.

'Seconds left until label check.

Seconds left until devices check-
pointed.

 Set to inhibit MTR from calling

1MB for S/C register error pro-
cessing.

Set if error processing ignored at
deadstart,

Set to allow MTR to accept DSRM
function for emergency step from
1MB, and to prevent DSD from
allowing UNSTEP command to be
entered. ‘
Set to indicate MTR has set step
mode on request from 1MB -
(emergency step).

Unused.

Real-time clock from RTCL, in
seconds/1000,, at which the last
threshold count or time interval
was exceeded for single SECDED
errors.

SECDED count.

Threshold count.

Ref

60454300 B

t5

t6

7

47-42
41-36
35

34-30
29-24

23-20
19-16
15-12

59-15
14

13

12
11-2

Description

The channel 16 S/C register con-
tents, words 0 through 16 (bits 0-
203). -
The channel 36 S/C register con-
tents, words 0 through 16 (bits 0-
203).

Reserved.

Equipment number of link device.
Set if this machine has DATI
recovery interlock,

Unused. '

Count of devices with initialize
pending that have not been check-
pointed.

Machines active,

Machines down.

Machine mask.

Unused,.

Disable priority evaluation.,
Disable job scheduler,

Disable autoroll.

Unused.

Fatal mainframe error flag,
System control point (SCP) sub-
system abort interlock.

000

oz
020
021
022
023

024

025
026
027
030

034
035
036
037
040

047

050
051

052
053
054
085
056
057
060

60454300 B

CONTROL POINT AREA

59 - 47 41 35 29 23 17 | 5 o]
exchange package area
i
11 error flags | SNVI!Y. | RA/100B | FL/100B [STSW
job name don | s oment |INMW,0AEW
CPU queue /
oriority | priority te - /J CPUs allowable [JCIW
CM residence time limit| T3 | CPU time slice limit TSCW
time entered X status CPCW
ECS ECS
Ta _ feserved . RA/I000B] FL/I0008 |ECSW, CPIW
PP recall register RLPW
. snse
Ts swene [/] snsw
MS1wW
messaqge ‘1 area
Ims2w
message 2 areaq
INOW
*
installation area .
INTW
‘te " SRU accumulator (micro units #10) ACTW,SRUW
CP accumulator ‘ CPTW
MS accumulator | MT accumulator | PF accumulator |IOAW
4
M13=Mi*M3 Mi4=M1*M4 Z adder accumulator |[MP {W,ADAW
M {* 41000 M12=M1* M2 reserved ACTWE,MP2W
I CPM (SRU=SRU + - ”»
1I—T7 CPM*CP) IOM(SR?-SRU+IOM 10) |MP3W
SRU gccount | computed SRU job step limit STLW -
reserved 2&% iﬁ%“ SRU at beginning of job step | SRUW
reserved %,Pe;i'?fmiﬁb ‘CP time at boqlnninq_of job stepCPJW
2-11

Ref

Bit No.

1

2

3

T4

+5

6

17

60454300 B

59
58
57
56
55-54
53
52-48

35-33
32-25
24

35
34-30

59-51
20
49
48
47

59
58
57

56-36
35-24
23-15
14
13
12

Limit flags:
59

58

57

56

55

54-48

Description

CPU W status.

CPU X status.

CPU auto recall (I status).

CPU subcontrol point active status.
Unused.

Job advancement flag.

Number of PPs assigned to job.

CPU status for rollout.
Unused.
Set if rollout is requested.

Set if CPU time slice is active,
Queue control (0=input, 1=rollout).

Job control flags (reserved).
Return private user files.

Set privacy ID on new files,
Preserve ECS over job steps.
FNT interlock.

Reserved.

026/029 punch mode.

Set if OVERRIDE required to drop
job.

Unused.

Reserved for installation use.
Reserved.

Subsystem idledown flag.

NOGO flag.

PPU pause flag.

Time validation limit.
Time limit.

SRU validation limit.
SRU limit.

Control statement limit.
Reserved.

Overflow flags:

417
46
45
44
43-42

59

MS accumulator.
MT accumulator.
PF accumulator.
AD accumulator.
Reserved,.

Disable SRU accumulation if set.

n
1

12

061
062
063
064
065
066
067
070
071
072

073

60454300 B

074
075
076
077
100
1o
102
103
104
105
1086
107
1o
Il

12
113
1a

127

130

177

59 53 47 - . 35 29 23 17 1 0
- 1 FPFW
; FL increase B
t2 rollin FL request FLCW
rollin ESC FL
t3 . ECS FL |increase req |E-CW
t4 . SSCW
list of files TTY inferrupt . TXSW,TIOW
TXoT address address 15 output pointer |y7aw’ oFw'
auxiliary pack name 16 PFCW
user number TS\ ‘I'-'T? user index |UTDW
:) terminal input error exit 710
T8 T“ ointer P Il return address |EECW, TINW
input FST |primary FSTY//]' | event descriptor | 0110t |Tpsw TERW
) . , time
ti2 control statement ™ fnext state- jimit index [CSPW
e .) current current half sector
113 | num | first track track sector flag cssw
job sequence control stgtement demand file
number address (TCS) random index |RFCW
reserved | Tia ALMW
dayfile msg| control mass storage
reserved count stmt count Tis PRU count ACLW
each bit has a special meaning AACW
buffer O | buffer 0 address| PYffer, 1 | butfer 1 address |1CAW
' special entry point word Ti6 SEPW
system processor call word TI7 SPCW
EFG R1G CCL data reserved JCDW
EF R3 R2 R JCRW
input buffer right screen left screen
118 address buffer address puffer address DBAW
LB1W
" loader control words TI9 LB2W
> ' LB3W
i, 120 FWA of dump |PPOW
reserved rai Ssow
computed CP job step limit CPLW
reserved
csBw
control statement buffer

60454300 A

Ref Bit No.

T1

12

13

T4

75

16

T

59

58
57-48
47-36
35-24
23-12
11-0
59-48

47-36
35-24
59-48
47-36

35-24

59-48

47-0

35-17

17-12
11-0
11-9
5-3

2-0

17

Description

Set when first charge processed.
Set if second entry in level-3 block,
Reserved.

SRU validation limit,

FNT ordinal of PROFILE file.
Track of level-3 block,

Sector of level-3 block,

Maximum field length (MFL) for
current job step,

Initial running field length; always
less than or equal to MFL (value

of zero indicates system field
length control),

Maximum field length for entire job;
MAX FL is upper bound on MFL.

Maximum ECS field length (MFL)
for current job step.

Initial running ECS field length;
always less than or equal to MFL
(value of zero indicates system
ECS field length control),
Maximum ECS field length for en-
tire job; MAX FL is upper bound
on MFL.

Rollout indicators (one bit per
subsystem) indicating the user job
is a candidate for normal rollout.
Connection indicators (four bits
per subsystem) representing par-
ticular subsystem the user job is
communicating with.

Previous error flag value if bit 58
set in word EECW indicating ex-
tended RPV mode.

Family EST ordinal.

Indexes into tables of limits.

Limit for size of direct access files.
Limit for number of permanent files.
Limit for cumulative size of indirect
access files.

Limit for size of indirect access
files.

Set if charge statement is required.

2-14

60454300 A

Ref Bit No.

18

19

10

11
$12

$13

59

58

57

56
55-48
47
46-36
47-36
17
17-0
30
59-54
53-48
47

59

58

57-54

o Description
No exit flag.
Extended RPV mode.
Interrupt handler in progress flag
(extended RPV mode only).
Set if one-time error previously
entered (extended RPV mode only).
Unused. ,
For nonextended RPV mode, set if
bits 46-36 are error flag instead of
reprieve error option.

_ Error flag or reprieve error option

for nonextended RPV mode.
Mask bits for extended RPV mode.

Job reprieved.

RPV parameter block address (ex-
tended RPV mode only)-

Valid event descriptor present.

Job class,

Reserved.

Set if EOR is on control statement
file.

Set if information is for INPUT
file. .

Skip to EXIT flag.

Unused, _

2-15

60454300 A

Ref

Bit No.

14

115

t16

17

47-45
44-42
41-39
38-36
35-30
29-24
23-18
17-12
11-6
5-0

23-18

17-0

For input:
59-42

41

40
39

38

37

36

35-0

For output:
59-36
35-24

23-0

Description

Magnetic tapes.
Removable packs.
Deferred batch jobs.
Local files,

Time limit.

SRU limit,

Field length.

ECS field length
Lines printed.
Cards punched.

Disposed output count.

Set indicates presence of entry
points.

Reserved.

Set if ARG= entry point present.

Set if DMP= entry point present.
Set if SDM= entry point present.

Set if SSJ= entry point present.

Set if VAL= entry point present.

Set if SSM= entry point present.
Reserved.

Restart flag.

Reserved. :
Suppress DMP= if control statement
call.

Create DM* file only flag.

Dump FNTs with control point area,
Leave DM* file unlocked, '
DMP= FL/100 (if field is 0, dump
entire FL).

SSJ= parameter block address.

Entry point if RA+1 request,
770000B if control statement call.
Special program request active
(1AJ only).

Clear RA+1 upon completion.

If set, parameter list is in bits
35-0; if clear, address of param-
eter list is in bits 17-0.

Does not start CPU at completion
of control statement call (1AJ only).
DMP-= initiation in progress.
Unused.

Refer to description of bit 39.

Unused.
Status return.
Unused.

2-16

Ref Bit No. o Description

t18 59 Disable dumps.

58-56 Unused.
55 ECS common memory manager flag.
54 CM common memory manager flag.
719 LB1W: , :
59 Use default map options if not set.
58 Reserved.
57 Local map option X,
56 I.ocal map option E.
55 ILocal map option B.
54 Local map option S,
53 Reduce flag.
52-36 Reserved.
35-24 CDC CYBER Interactive Debug
control byte.
23-0 Global library set indicators
(6-bit fields):
00 End of library set.
01-76 LBD ordinal of system
library.
7 User library; logical file

name of first user library

in LB3W; logical file name

of second user library in

. ‘ LB2W,

LB2W, LB3W: o .

59-0 - . Either logical file name of second
(LB2W) or first (LB3W) user
library, or a collection of 6-bit
global library set indicators.

20 47-36 ECS FL of program making DMP=
call.
35-24 Field length of program making
DMP= call.
23-18 Dump word count.
$21 12~ Swap out (SF.SWPO) in progress.
11-0 Subsystem outstanding connection
count.

60454300 B

PP COMMUNICATION AREA

59 47 41 35 0
égg Ppnag::q?gm T parameters
ouT [monitor
REG |fnct code parameters
message buffer
(6 words)
DAYFILE BUFFER POINTERS
59 47 35 23 1 0
fwa dayfile butfer [N W3%dS tength Of t2
first ent c t
eqno | fret [ourent [ewtent V7
Ref Bit No. Description
1 41 Set if called with auto recall.
40-36 Control point assignment.
f2 11-0 Interlock byte (0 = no dump in

60454300 A

IA

0A
MA

progress, 1 = dump in progress).

CENTRAL MEMORY TABLES

Equipment Status Table (EST) Formats

" Mass Storage Device

60454300 B

59

47 4l 35 23 1] 0

!

t t2 | 13 ta 18 'dye;e °""Jf°’§§1r°

Nonmass Storage Device (3000 Type liquipment)

52 47 - 4l 35 - 23 18 Q

59
te Johg | cne [ena 17 [1s e 18

Ref Bit No. Description

t1 29 Set to indicate mass storage device.
58 Set if device has copy of system.
57 Set if shared device,
56 Set if removable device.
55 - Set if 844/885 disk type equipment.,
54 Set if device is not currently avail-

able for access,

53 Set if equipment is down.
52-48 Reserved.

T2 47 Channel down bit.
46-42 Alternate channel.

T3 41 Channel down bit.
40-36 Primary channel,

t4 For 844/885 disk type equipment:
35-24 Zero., :
For other equipment types:
35-33 Physical equipment number.
32-30 Zero.
29-217 Device selection for connect code,
26-24 First physical unit for device.

5 23 _ ON/OFF flag (set if access not

allowed).

60454300 B

Ref Bit No. ‘Description
t6 59 Unused.
58 Allocatable device.
57-56 Unused.
55 Set if 580 PFC printer,.
54 Set if V carriage control processed.
53 Set if equipment is down.
+7 For unit record equipment:
35-24 Forms code.
For other equipment:
35-30 - Channel D.
29-24 Channel C,
T8 For magnetic tape equipment:
11-9 Equipment number.
8-4 Flags:
01 GCR (1600/6250) tape unit.
02 Disable block-ID (66x only).
04 Reserved.
10 67x tape unit.
20 66x tape unit.
3-0 Unit number.

For other equipment types:

11-9 Controller number.
8-6 Print train (if applicable).
5-0 Unit number,

For unit record equipment:
5-0 ID number.

Equipment Codes

Code

CP

MS
MT
NE
NP
NT
ST

TT

Description

Card punch (3446/3644-415),

Card reader (3447/3649-405).
Extended core storage. ¥

Disk storage subsystem (7x54-844-21).

Disk storage subsystem (7x5x-844-4x/
44).

Disk storage subsystem (7154-844-21).
Disk storage subsystem (715x-844-4x).
Disk storage subsystem (7155-885).
Distributive data path to ECS.

Full-track disk storage subsystem
(7155-885).

Display console.

Line printer.

Line printer (580-12).

Line printer (580-16).

Line printer (580-20).

Mass storage devicv:e'.v

Magnetic tape drive (7-tréck).

Null equipment.

255x Host Communications Processor.
Magnetic tape drive (9-track).

Remote batch multiplexer (6676 or
2550-100).

’Fime-sharing multiplexer (6676,
6671, or 2550-100).

 ECS subequipment values exist in associated MST,
The values are in word DILL (byte 3) and further
define the type of ECS equipment. ’

60454300 B

2-21

File Name/File Status Table (FNT/FST) Entry

File in Input Queue

59 53 47 35 23 17 I SI 0
. job [type
job name org |INFT T“
1d aq first binary card fleid queue
code | no track sequence no| length priority

File in Print Queue

59 53 47 35 17 11 5 (0]
- 70D Jtype | |
job name org |PRFT|T™ i
first queue

t2 | no track T3 priority

[File in Punch Queue

59 53 47 ‘ 35 17 1 5 (0]
t
job name f,o,bg Pzig'er 1M
eq first queue
12 | no track t3 priority

File in Rollout Queue

59 53 47 35 23 17 I 5 [0)
job name éO,% é%?:?r -t4
Td | eq first ECS field queue
code| no track FL/1I000OB] length priority

File in Timed/Event Rollout Queue

59 53 47 35 23 17 11 5 0
. ob |type |
job name bra |TEFT| T

event| eq first event field roliout

des no track descriptor length time pd

60454300 A

60454300 A

Mass Storage Iiles
Not in Input, Print, Punch, or Rollout Queue

59 53 47 35 23 17 i 5 0
. file cp
file name Cts pe |+t

id eq first current’ current | t6
code| no track track sector ‘

Magnetic Tape Files

59 53 47 35 29 17 1l 5 0
) il
file name r7 ,;pee Ol cp
id UOT add V3N T
cc')de r?g assig C:D | te random eanddrryess 19 16
Fast Attach Permanent Files
59 53 47 35 23 17 Il 5 0
tile name - ho thg?r ¢p
eq first user ¢t |us ct Jus ct :
1] no | track READMD_|RDAP [READ 12
Rel Bit No, ‘ Description
T1 5 Set if system sector contains control
information.
t2 59-57 Device selection field.
56-54 External characteristics.
3 ;- 35-33 Forms code. ,
32-12 Terminal identification (TID).
T4 5 - Set if user job has subsystem connection
‘ (either long term connection or wait
response).
15 17 Unused.
16 Set if extend-only file.
15 Set if alter-only file.
14 Set if execute-only file.
13 Unused.
12 Write lockout.
176 10 . Unused,
9 Indicates the track interlock status

of LIFT files (mass storage only).
Set if file is opened.
Set if file is written since last open.
Set if file is written on.
-4 Unused,
2 Read status (0 = incomplete read,
1 = EOR, 2= EOF, 3 = EOI).
. Set if last operation write,
Clear if busy status.

wW U -3

[

2-23

Ref Bit No. Description

T7 17-14 Unused.
.13 Set if opened.
12 Write lockout.
T8 35-32 Data format:
0 1
1 SI
2 F
3 S
4 L
31-30 Reserved.
79 11 Set if labeled tape.
10 17 Unused.
16 Set if modify.
15 Set if append.
14 Set if execute.
13 Set if write.
12 Set if read.
-f11 59-54 Fast attach entry index in ECS (if

globally fast attach), 0 if local fast
attach file.

t12 11-9 Write attach mode (7 = write, -
3 = modify, 1 = append).
8-1 Unused.
0 Clear if busy status.

60454300 A

File Types

Files in Queues

Type Value Description
INFT 0 Input.
ROFT 1 Rollout.
PRFT -2 Print.
PHEFT 3 Punch.
TEFT 4 Timed/event rollout,

Special Queue Files

Type Value Description
S1FT 5 Special file type 1.
S2FT 6 Special file type 2,
S3FT 7 Special file type 3,
Other Files

Type Value Description
LIFT 10 Library.

PTFT 11 Primary terminal,
PMEFT 12 Direct access

permanent file,

FAFT 13 Fast attach file,
SYFT 14 System.

LOFT 15 Local.

Job Origin Codes

Type Value Description
SYOT 0 System.
BCOT 1 Local batch.
EIOT 2 Remote batch .
TXOT 3 Time-sharing.
MTOT 4 M ultiterminal.
60454300 A , 2-25

60454300 8B

Mass Storage Allocation (MSA) Area

o0
o0t

002
003
004
005
008
007
008

59 47
\‘erlnaps'eq temporary devices?T
in;L?;stieq input file devicest
oafp"suq output file devices?
,O.'l‘;.f{eq roliout file devicest
du,',‘f’;?;.q user dayfile devicesT
prirrlg:; eq primary file devices'
|o::%sl*eq local file devices?
L(ls%s'gq LGO file devices?
"1‘31?33"33” secondary roliout file devices'

¥ Bit 47-eq is set for each equipment with the

allocation type selected,

2-26

60454300 B

Mass Storage Table (MST)

23 17] 5 0

59 5| 40 35
ooo| t1 /////// TRT length| 2 | "% 291 lypeL
001 t3 (userECS | file count TaFT - 1a ACGL
002] ECS address of MST/TRT ECS MST/TRT update cnt ts |soeL
cos| T IET | el | Pk | Crarere]| BAT |t
004 family .or pack name DN V///‘ Te |PFGL
005 user number for private pack 17 PUGL
006 IE driver sector {moeL
oo77////////,////////////////////////////// Rk

010 installation area (global) ISGL
Il /////////////////////////////////// r26L
ol12| octivity unit current ECS DALL

count mterlocks position m?ernul error #
013 te DILL

DAYFILE | ACCOUNT | ERRLOG t tabl

oli4 track track track sys'e'nt\mko ¢ 710 buLL
015 tn user count T2 STLL
016 t13 poLL
o017 installation area ISLL
Ref Bit No. I_D_e__s_c___ripti_cﬂ
T1 59-48 Number of tracks on device.
T2 23 NOS format MST.

22-12 First available track word pointer,
T3 59 CTI present.

58 System deadstart file present.

57-52 Reserved.

51-48 Global interlock (machine mask),
T4 11 Redefinition requested flag.

10-7 Redefinition reply bits (machine

masks).
6 Set if sector of local areas is
present.
5 Unload (all machines).
4 Device error idle status:
0 No error,
1 Error detected on device,
3-0 Permanent file utility active

(machine mask).

2-27

60454300 B

Ref

t5

16

+7

8

+ 9

55-48

44-36

59-48
47

46-42
41
40-36

35-24
23-22

20-18

Description

Reserved.
Interlock (machine mask).

Relative unit in multiunit device.
Number of units in multiunit device.

Catalog track contiguous with label
track.

Catalog track overflow (O).
Secondary device mask.

Device mask.

Removable (R).

Auxiliary permanent file device (X).
Sixteen-word PFC device.

Device last checkpointed on MMF
system (in label section only).
DAT entry index.

Half track status (1=half, 0=full)
Release reservation when channel
released.

Reserved.

Single-unit sector limit.

Mass storage allocation flags.
715x controller present on second
channel.

Second channel in CMRDECK in
definition of EQ.

715x controller present on first
channel, :

First channel in CMRDECK in
definition of EQ.

Unused.

Reserved.

Maintenance mode set (ECS).
Memory type:

0 No CPU.
1 ECS .

2 ECS II.

3 LCME.
4-7 Reserved.

60454300 B

Ref

Bit No.

+ 10

11

12

13

17-15

14-12

11-6

11
10-0

59
58

56

55

54

53

52

51

50

49
48
47-42
41-36
35-24

11-6

58
57-54
53-48
47-0

Description

CPU type:
0 No CPU path.
1 ECS.
2 LCME.
3-7 Reserved.
PP path type:
0 No DDP.
1 DC145 parity enhanced DDP.

2 DC135 DDP.
3-7 Reserved.
Unused.

Algorithm index for 844/885 disk
monitor function.

Family idle down status.
Family activity count.

Format pack (844/885 disk
equipment),

Half/full track initial requeues.
Initialize permanent files (I).
Initialize IQFT (I).

Initialize DAYFILE (I).
[nitialize ACCOUNT (I).
Initialize ERRLOG (I).
Initialization (HT/FT) (I).
Unloaded in this machine (L).
Checkpoint requested (C).
TEMP (T). :

Alternate system device (A).
Reserved.

Error status.

A 2-character machine identification.

Multiple equipment link.
Original number of units.
Device in use,

Local utility interlock.
Local area interlock.

Redefinition in progress (drive
reserved).

Null equipment indicator.
Reserved.

Number of units minus 1.

Unit list, ordered right to left,
6 bits per unit.

Track Reservation Table (TRT)

Word Format

59 47 35 23 i 0
track track track track t
link link link ~_link
Ref Bit No. , Description
¥1 11-8 Each bit set indicates correspond-

ing byte (0 through 3) is first track
of a preserved file. '

7-4 Track interlock bits.

3-0 Track reservation bits.

Track Link Byte (Format 1) :

Bit Contents
11 Set .
10~0 Next track in track chain.

Track Link Byte (Format 2)

Bit Contents
11 Clear.
10-0 End of chain (EOIl sector in file).

60454300 B ' _ - 2-30

60454300 B

Machine Recovery Table (MRT)

Word Format

59 31 0
unused 1
Ref Bit No. Description
T1 31-0 Each bit represents one logical

track (bits 10-5 of the logical

track number denote the word
number in the MRT and bits 4-0

are the bit numbers within the word).

The meaning of the MRT bit depends upon the state
of the track interlock bit in the TRT.

Track Inter- MRT

lock Bit Bit Description

0 0 Track is not interlocked or it
is local to another machine.

0 1 First track of a file is local
to this machine.

1 0 Track is interlocked by
another machine.

1 1 Track is interlocked by this
machine,

2-31

Job Contro>l Area (JCB)

59 47 35 23 I 0
in. queue lower upper priority cur. intvl
priority bound bound age intvl count INQT
0O in. queue lower upper priority cur. intvl
ne priority bound bound age intvl count ROQT
for in. queue lower upper priority cur. intvl
each priority bound bound age intvl count oTaT
: i init. CPU CPU time CM time [/
origin 'phoﬁiy slice snc; 42%%37f/§§$§22éézastT
type max jobs max FL max rL |maxECS FL | max ECSFU
and or_users any job all jobs any job all jobs
job reserved
class PFCT
reserved ETB
w4
Ref Bit No. Description
T1 59-438 Index into tables of limits.
59-57 Index a table of limits for size of
each direct access file.
56-54 Index a table of limits for number
of permanent files.
53-51 Index a table of limits for cumulative
sizc of indirect access files,
50-48

60454300 B

Index a table of limits for size of
each indirect access file.

Libraries/Directories

Resident CPU Library (RCIL.)

Type OVI.
59 17 0
program name 1R Br aram)
Type ABS
59 7 0
00000000) e srogram)

32

60454300 B

Resident PPU Library (RPL)

59

41

35

23 1 0]
L load V. length
package name ///A address W (links)
PPU l.ibrary Directory (PLD)
CM Resident
59 4| 35 23 | 0
package name 1IRPL address length udlgvf,edss
Non-CM Resident
59 4| 35 23 Il]
' Toad
package name h track sector address
CPU Library Directory (CLD)
Type OVL
59 47 23 17 I 5 Q
~ program name t2 ////
4 B
///////A t3 track sector
Tvpe ABS
59 47 23 17 I S Q
name of first entry point t2 er;c:.s
ta) t3 tra sector
additional entry point nomes

(one per word)

Tvpe PROC

59

23

17

0

procedure name

<3

w77

2220

random address bias

Type REL

59

a7

23 17 H 5 O

no.
program name T2 epts

200

13 tra sector

ck
additional entry point names (one per word) / W

User Library Directory (LBD)

Type ULIB

59

23 |7 0

library name ' 'W

Ref Bit No.
1 41-36
T2 17-15

14

13

12

11-6
T3 47-24
T4 59-48
5 17

60454300 B

Description

Alternate device or system device
equipment number.

Unused. }

Relocatable record flag.
NOS/BE record flag,

Unused.

Alternate device equipment num-
ber, :

If program is CM resident, field
contains the absolute address in
RCL. If program is assigned tc
alternate system device, field has
mass storage address of copy on
system device,

FL required (use of bits 59 and
58 indicate MFL= entry point).

Set if CCL procedure.

SYSTEM SECTOR FORMAT
Standard Format

o] e S—

ol jess/lcss jess - - crss k 7/////4
2 012 rcss riss rbss 22?%325%:”
Iss

013 otss prss miss f
o1 4 icss ecss fcss dvss dcss
ois ‘ dass
016 ‘ fdss , odss
o7 diss Y2224
020) : fsss
021) fmss © 00SS$
022 S acss
023 cdss
024) jnss
025 ohss
026 dhss ‘
027 frss
030
: vass
. !
046
- 047 reserved
050
051
. ubss

° (user data block)

062

N = @

t 1 For print/punch files, pfss (bits 47-36), rass (bits
35-12); for input files, jsss (bits 59-36), bits 35-24
unused, jtss (bits 23-12).

T 2 For input files, bits 59-18 are defined as terminal
name (tnss).

60454300 B R 2=35

The following apply to all system sectors.

fnss
eqgss
ftss

nsss
fass
dtss

FNT entry.

Equipment number.

First track.

Next sector,. ,

Address of FST entry.

Last modification date and time
(packed format).

The following apply to input files only.

jsss
jtss

jfss

jcss
jess
Crss
tnss

Job sequence number.

Job time limit.

Job flags.

Job statement CM field length.
Job statement ECS field length.
Cards read.

Terminal name.

The following apply to print/punch files only.

pfss
rass
scss
lcss
rcss
rtss
rbss

Punch format,

Random address of dayfile.
Spacing code for 580 PFC support.
Lines or statement limit index,
Repeat count.

Random index.

Requeue number.

The following apply to all queued files.

otss
prss
miss
flss
icss
ecss
fcss
dvss
dcss
dass
fdss
odss
diss
fsss
fmss
00SS
acss
cdss
jnss
ohss
dhss
frss
vass
ubss

60454300 B

Origin type.

Priority.

Machine ID.

File size (sectors/108).
Internal characteristics.
External characteristics.
Forms code.

Device code.

NOS/BE device code,
Destination user number.
Destination family name.
Family ordinal of destination (future),

Destination terminal identification (TID),

FST entry.

Family name of creator.

Family ordinal of creator (future).
User number of creator.

Queued file creation date and time,
Job statement name,

Origination host name (future),
Destination host name (future),
File routing control.

Account file validation block.

User block.

2-36

Direct Access File System Sector Format
59 53 47 4| 35

000 file name PMFT///
T
Zzz - /{/ packed date and time

oo / / /// /A |
ol flyllqi ///// st o 1 sector
ors ///////////// o .mud m:e.m

016 [PRIeR| 55 [7777777/1 wtility control date and time

017 file passwor L0000

'025
026
027

030
031
032
033
034
035
036

072
073

e
076

60454300 B

23 i? I

° /////////////////////

ntrol word

nstallatio

///////////

///////////// R
mach.2I0| ta RM RA R

nstallatio

CTSS

ucss

2-37

Ref

egss
ftss
ucss

Bit No.

60454300 B

F1

T2

T3

T4

59-49
48

59-54
53
52
51
50
49

48

47-36

47-37
36

Fquipment number.

First track.

Current user counts:
RM READMD users.
RA READAP users.
R READ users.

Description

Zero.
Set if enhanced EOI sector present.

Reserved.

File has been purged.

File can be shortened (W mode).

File can be rewritten (W or M mode).
Zero.

File can be extended (W, M, or A
mode).

Zero.

Fast attach (40xx); upper bit set
indicates file is in fast attach
mode and lower 6 bits (41-36) con-
tain index into ECS tables if file

is global fast attach.

Zero.
Local write flag (file attached in
W, M, or A mode).

ECS Direct Access Chain

000
00|
002
003
004
005
006
007

cgss
ftss
dtss

mid

ft

In

ra
At

- 60454300 B

** UECS. . V///FLIFT V///
/e ates
Y224

Equipment number,

First track.

Last modification date and time (packed
format). .

Machine ID.

First track of subchain.
Length of ECS hlock.
RAE of ECS bhlock.

Last track of subchain.

2=-39

ROLLOUT FiLE

System Sector

000

057
080

o077

60454300 B

dayfile buffer pointer

input file FNT entry

list of equipment ossigned to job
(terminated by zaro word)

SSJ= parametar block

terminal table contents
at last rollout

terminal table contents
for recovery

File Format

control point area

dayfile buffer

FNT entries
terminated by logical record

t

terminal output

terminated by logical record

0(CM)
central
memory
FL-MCMX/2-1 (CM)
O(ECS)
extended
core
storage
FL-1(ECS)
FL~MCMX/2 (CM)
central
memory

J FL—1(CM)

T This part of the rollout file is used only for TXOT
jobs.

60454300 B 2-41

JOB COMMUNICATION AREA

55 47 40 7141l 5 0
1L Jsense |7
RA // ///////////////////// Lwch ,/%
package
RA +1 name '2__‘ arguments
RA+2 ARGR
parameters from the program
. call statement
. (aveilable to user during job execution)
RA$27 |7~ ~"—""7"fT" "7~~~ - - - T 77 SPPR
< special program pdrameter areag
RA+4T | o o o o o e e e e o e - ——— —]
) number of
RA + 64 name parameters PGNR,ACTR
| t ta | | next word avail
RA+65 [T '3 reserved —°|_for loading |CMUR,LWPR
[1ob orig I'st word of
RA +66 |15 reserved type 16 |object program)éd,';%‘JOPR
RA+67 |- 1t7 reserved -—t8 reserved Egrgs
RA+70
CCDR
control statement image
(may be replaced by operator message)
RA+77
RA+100
. loader area
RA+110
Ref Bit No. Description

1 14
13
12
$2 40
¥3 59
t4 18
$5 59
+6 23-20
19
18
7 59
8 29
60454300 B

CFO bit if console forced operator
command is allowed.

Subsystem idledown flag.

Pause flag.

Auto recall.

Set if compare/move unit (CMU)
is present.

Set if load from system library.
Set if CEJ/MEJ option is available.
Reserved.

Set if program called from DIS.
RSS bit.

Set indicates system is in 64-
character set mode.

Set if load has completed.

EXCHANGE PACKAGE AREA

Exchange package area for CDC CYBER 170 Series,
Models 171, 172, 173, 174, 175, 720, 730, 750, and
760; CDC CYBER 70 Series, Models 71, 72, 73, and
74; and CDC 6000 Series Computer Systems.

59 853 47 4l 35 7 o
000 ;///A ﬁAP AO BO
00! //A _ Al Bl
002 //// FL A2 g2
003 - EM RAEW A3 B3
004 ;5 — _ A4 B4
005 % A5 85
006 //// MA A6 B6
007 //////////////// A7 87
010 | X0
on X
012 X2
013 X3
ol4 X4
015 X3
ol6 X6
017 X7

60454300 B

2-43

Fxchange package area for CDC CYBFR 170 Series,

Model 176 Computer Systems.

60454300 B

59 53 35 17

000 //// P AO BO
001 /] RA Al Bl
002 V/// FL A2 82
003/ PSD A3 B3
004 [RAE A4 B84
005 % FLE AS BS
006 //// NEA (MA) A6 86
007 7/A EEA A7 B7
010 X0

Ot X |

012 X2

013 X3

Qi 4 X4

015 x5

ole X6

017 X7

44

The exchange package area fields apply to all NOS
computer systems unless otherwise noted.

Field "Description
P Program address.
Ai Address registers.
Bi Increment registers.
RA Reference address for central memory.
FL Field length for central memory.
E Mt Exit modes. An exit mode is selected

by setting the appropriate bit and dis-
abled by clearing the appropriate bit.

Bit Description
59 CM data error.
58 CMC input error. {f
57 ECS flag register operation

parity error.t¥
56-53 Not used.
52-51 Hardware error exit status

bits. ¥+
50 Indefinite operand,
49 Operand out of range.
48 Address out of range.
PSDttF+ Program status designator (PSD)
' © register.
Bit Description
53 Exit mode flag.
52 Monitor mode flag.
51 Step mode flag.
50 Indefinite mode flag,
49 Overflow mode flag.
48 Underflow mode flag.
47 LCME (ECS) error condition.
46 CM error condition.
45 LLCME block range condition.
44 CM block range condition.
43 LCME direct range condition.
42 CM direct range condition,
41 Program range condition.
40 Not used. :
39 Step condition,
38 Indefinite condition.
37 Overflow condition.
36 Underflow condition.
T Does not apply to CDC CYBER 170 Series, Model 176.
¥+ CDC CYBER 170 Series, Models 171, 172, 173,
174, 175, 720, 730, 750, and 760 only.
Tt CDC CYBER 70 Series, Model 74 only.
77 CDC CYBER 170 Series, Model 176 only.
60454300 B

Field Description

RAE Reference address for ECS.
FLE Field length for ECS.

MA Monitor address.

NEAT Normal exit address.

EEAYT Error exit address.

Xi Operand registers.

ERROR FLAGS

Error flag Mnemonic Description
1 ARET Arithmetic error.
2 PSET Program stop.
3 PPET PP abort.
4 CPET CPU abort.
] PCET PP call error.
6 TLET Time limit,
7 FLET File limit,
10B TKET Track limit.
118 SRET SRU limit.
128 FSET Forced error.
13B : ODET Operator drop.
14B RRET Operator rerun.
15B OKET Operator kill.
168 SSET Subsystem abort.
17B ECET ECS parity error.
20B ' PEET CPU parity error.
21B SYET System abort.
22B ORET Override error condition.

t CDC CYBER 170 Series, Model 176 only.

60454300 B

MASS STORAGE LABEL FORMAT

DEVICE LABEL TRACK FORMAT

60454300 B

000
001

012
013
0l4
0I5
016

o7

label sector

track reservation table

sector of local information (2-word entries)

device information sector

intermachine communication area (ECS labei track only)

MMF environment tables (ECS label track only)

CPUMTR storage move area for ECS (ECS label track only)

DEVICE LABEL SECTOR FORMAT

000
00!
002
003
004
005
006
007
o010

o027
030

or7

reserved
label equipment
level type reserved
reserved
NOS MST
unused

MULTIMAINFRAME TABLES

INTERMACHINE COMMUNICATION AREA

communication area O

communication areag |

communication area |0O

[iach communication area has the following format.

59 47 35 23 1 0
oo | N YT M e
. / MD
o] o]] message word |
002 message word 2
003 message word 3
004 message word 4
005 message word 5
006 message word 6
N Intermachine function number.
MI Muchine initiating request.
MP Machines to process request.
MD Machines done processing request.

60454300 B

48

MMF ENVIRONMENT TABLES

Sector 168 of the ECS label track is defined as follows:

; 59 47 1 0
000. MMFL for mainframe |

olo}} MMFL for mainframe 2

002 . . MMFL for mainframe 3

003 MMFL for mainframe 4

004 ~ multi-mainframe | system time

005 ’ multi ~mainframe 2 system time

006 multi - mainframe 3 system time

007 multi-mainframe 4 system time

oo | RO V00 oAT count
o 0000000000 A AT o

olz One word per flag register bit. Each
word contains the MMFL word of the
machine which currently has the cor-
responding fiag register interlock.

033

034 machine | requests
035 machine 2 requests
036 ' machine 3 requests
037 "machine 4 requests
040) machine | requests
041 machine 2 requests
042 machine 3 requests
043 machine 4 requests
044

o

. : unused '
o067

070

: 3 : ‘installation area
77

60454300 B

MMF - DAT TRACK CHAIN (ECS)

Track N
0000
M device access table (DAT)
o777
1000
fast attach table {FAT)
Track M (same format for each device)
0000
. MST for shared device
. (global area)
0011
0012
: local area for machine index |
c017
0020
: local area for machine index 2
0025
0026
: local area for machine index 3
0033
0034 .
. local area for machine index 4
0041
0042
: unused
0077
0100
. TRT for device
*
1077
1100
. MRT1
. (machine recovery table)
177
1200
[]
. MRT2
1277
1300
*
. MRT3
L]
1377
1400
L]
. MRT4
L[]
1477
60454300 B

2=-50

MMF - ECS FLAG REGISTER FORMAT

flaq reqister

59 .
B1t ‘Se't/ o Name
17-12 ——-
11 COMI
10 - CIRI
9 FATI,
PFNI
8 IFRI
7 BTRI
6 PRSI
5 DATI
4 TRTI
3-0 -

Description

Reserved.

CPUMTR intermachine
communication request present.
CPUMTR interlock recovery.
FAT and PFNL interlock.

Intermachine function request
interlock.

Block transfer in progress.
Deadstart ECS preset in progress.
Device access table interlock.
TRT interlock; machine.

specified by bits 3-0 is requesting
a TRT interlock. '

- Machine mask indicating which

machine has TRT interlock bit
set.

.DEVICE ACCESS TABLE (DAT) ENTRY.

59 . 17 H 0
; MST
000 family pome/pock name dn pointer
00l 0 status
dn Device number.

MST pointer

status

60454300 B

If zero, device is not shared.
Bits 11-5 are reserved, bit 4

is set if recovery is in progress,
and bits 3-0 are machine mask
of machines accessing device-

FAST ATTACH TABLE (FAT) ENTRY .

GLOBAL

Q00 fast attach file name 7////////////
001 W/ first trk RM RA »//////
002 |mach. | ID [/ ///// RM RA | R ///////
003 [mach 210 77777771 Rm ra | R

004 [mach. 3 ID /////// RM RA R ///////
005 Imach. 4 ID W RM RA R ////////,
ZZ? tamily name dn /W

RM RIIADMD usecrs.

RA READAP users.

R Read/write users.

dn Device number.
PFNL ENTRY FORMAT - GLOBAL
000 0
00l PFNL (global)
002 PFNL for mainframe |
003 PFNL for mainframe 2
004 PFNL for mainframe 3
005 PFNL for mainframe 4
006 o]
oo7 0]

The first entrv of the FAT is an 8-word entry of
PFNL words in the preceding format.

60454300 B

60454300 B

PPU MEMORY LAYOUT

PPO . SYSTEM MONITOR (PPU PORTION])

0000

© 0100

7777

" DIRECT CELLS

SYSTEM
MON!TOR
PP PORTION

60454300 B

PP1 . SYSTEM DISPLAY DRIVER (DSD)

0000

0100

717

DIRECT CELLS

SYSTEM
DISPLAY
ORIVER

COMMAND OR SYNTAX OVERLAY

LEFT SCREEN OVERLAY

RIGHT SCREEN OVERLAY

2-54

POOL PROCESSORS

(PP2 through PP11 on 10 PP machines; PP2 through
PP11 and PP20 through PP31 on 20 PP machines.)t

- 0000

0070
.
0073
0074
0075

-
Q077

© 0100

2" s 3 s

1073

7777

DIRECT CELLS

READ ONLY CONSTANTS

CONTROL POINT ADDRESS

COMMUNICATION AREA ADDRESS

PPU RESIDENT
AND
MASS STORAGE DRIVER

PROGRAM
AND
OVERLAYS/BUFFERS

+ PP numbers are in octal notation.

60454300 B

n
]

55

60454300 B

DISK DEADSTART SECTOR FORMAT

o

200000003000

067
070
071
Q72
073
074
o7s
076
orr

59 a7 35 23

initiol program load (IPL) executable code

common test and initiglization (CTI) pointer

area

maintenance software (MSL/CMSE) pointer

area

area

deadstart diagnostic sequencer (DDS) pointer

' operating system (NOS) pointer area

T = IPL tronsfer address —1 (7420g)

2=56

MTR/CPUMTR 3

CPU AND PP MONITORS

NOS utilizes two monitors: CPUMTR (central processor monitor)
which controls CPU monitor mode execution and CPU scheduling; and
MTR (peripheral processor monitor) which is in general control of
the system and operates in PPO.

These two monitors work together, yet independently to allow the
system to run smoothly and effectively.

Figure 3-1 is an overview of system interaction showing both
monitors as a controlling entity. PPs communicate with the CPU
and vice versa through MTR by means of input registers (IR),
output registers (OR), and RA+1 calls.

Figure 3-2 shows the interaction between this monitor concept and
PP resident using the PP IR and OR. '

Figure 3-3 shows the monitor interaction between the CPU, PP, and
each monitor using the exchange jump feature. With the central
exchange jump/monitor exchange jump (CEJ/MEJ) option, the CPU
program can either wait for MTR to call CPUMTR by finding RA+1
nonzero, or the CPU program can directly call CPUMTR. PP routines
may either wait for MTR to call CPUMTR by finding the OR nonzero
or call CPUMTR directly. Without the CEJ/MEJ option, CPU routines
and PP routines must wait for MTR to call CPUMTR for them.

Figure 3-4 shows the entry points for CPUMTR, while tables 3-1,
3-2, and 3-3 show the monitor functions processed by CPUMTR.

¢

. User
PP : Control
Communications ’) Point
Area ‘
. RA
‘pool input reg. both
s) _ Y +
processor output reg. monitors RA+1
message
buffer .
RA+100
v
user
program

Figure 3-1. System Interaction

60454300 A 3-1

monitor

PP resident

PP communications area

idle loop
e rmn————————

PP available
control point
number

program name

assign PP to this > load parameters | —— >

contral point message buffer

| T

) J

load and
execute the
requested program
l \
monitor checks @‘—MW‘ <—— | inform
this PP's monitor of
output register end of operation

'~

\

y
clear IR and OR 0---=---- 0

and indicate > [0—-_-__"0

this PP is free

l

Figure 3-2. System Interaction

60454300 A 3-2

control

CEJ/MEJ _
point

- option present

T\ MXN | XJ
P - CPUMTR [

resident

" PP output
_ register

control
point

PP

no
CEJ/MEJ resident

~—=—=—=—| CPUMTR |— — = ———
option : : |

RA+1

PP output

register

Figure 3-3. Monitors Interaction

60454300 A 3-3

Entry

Name

MTR

PMN

PPR

PRG

IDL
IDL1

Figure 3-4.

60454300 A

related
routine

Description

From CPU program

From PP monitor

From pool PP program

Address where system control point begins
execution in program mode. When system
control point exchanges to the CPUMTR, CPUMTR

begins execution at MTR

From CPUMTR. These are idle Loops for CPO
and CP1 respectively

CPUMTR Entry Points from Exchange Packages

AlLL system interaction is effected using the exchange jump
instructions. ' o o

The executable code of CPUMTR begins at the end of the dayfile
dump buffer.

Functions proCessed’by MTR for pool PPs enter CPUMTR at PPR (the
value determines that the function is intended for MTR).

TABLE 3-1. VALUES OF MTR FUNCTIONS

} Name | Value | Description: {
o--	1	Unassigned
-- 2	Unassigned	
CCHM	3	Check channel
DCHM	4	prop channel
pEam	5	Drop equipment
pFMM	6	Issue dayfile message
--	7	Unassigned
seam	10 -	Set equipment parameters
PRLM	‘11	Pause for storage relocation]
RCHM	12	Reserve channel
REMM	13	Request exit mode
REQM	14	Request equipment
rOCM	15	Rollout control point
RPRM	16	Request priority
"] RJISM	17	Request job sequence number
-- 20	Unassigned	
RSTM	21	Request storage
== 22	Unassigned	
DSRM	23	DSD requests
ECXM 24	ECS transfer 1	
TePM	25	IAF/TELEX get pot
TSEM	26	IAF/TELEX request
DEPM	27	Disk error processor
opReM	30	priver recall CPU-
scepm	31	select CPU(s) allowable for job
		execution
EATM	32	Enter access system event table
pswM	33	priver seek wait
--	34-35	Unassigned

60454300 B | 3-5

Functions processed by CPUMTR, enter CPUMTR at PPR.

60454300 B

TABLE 3-2.

VALUES OF CPUMTR FUNCTIONS

Abort control point

Change CP assignment

Change error flag

Drop CPU

Set FNT dinterlock

Drop tracks

Drop PP

ECS transfer

Recall CPU

Request CPU

Request data conversiaon

Interlock and update fields in
CMR/ECS

Accounting functions

Request PP

Request job scheduler

Reserve track chain

Set file busy

Set track bit

Update accounting and drop PP

Search peripheral library

Job advancement control

pPelink track chain

Transfer data

Tape 1I/Q processor

Request time or SRU limit

Load central program

Clear storage

Checksum specified area

Load disk address

Validate mass storage

PP I0 via the CPU

Unassigned

Maximum number of functions

- S S - - - - - W W TS L A A WD W W A WS P D MW W S W A Gh WS WS W WR W WS e e e -

Functions issued by MTR (only) ‘and processed by CPUMTR enter
CPUMTR at PMN.

TABLE 3-3. M

M

| ARTF | 1
| IARF | 2
| EPRF | 3
| MRAF | 4
| MFLF | -5
| sCSF | 6
| sMsSF | 7
|- CMSF | 10
| ROLF | 41
| ACSF | 12
| PCXF | 13
| ARMF | 14
| MREF | 15
| MFEF | 16

MTR functions processed by
at MNR (table 3-4). Table

CPUMTR.

60454300 B

"TABLE 3-4.
| Name | Value
S L
| MSTF | 0
| POMF | 1
| PMRF ! 2
|
| MECF | 3

|
|
|
|
|
|
| Reset CPU I status
|
|
|
|
|
|
I
I

TR FUNCTIQONS PROCESSED BY CPUMTR IN
ONITOR MODE

Update running time
Initiate auto recall

Enter program mode request
Modify RA

Modify FL-

Set monitor step

Clear monitor step

Set rollout required

Advance CPU switch

Process alternate CPU exchange
Advance running time MMF mode
Modify ECS RA

Modify ECS FL

CPUMTR in program mode enter CPUMTR
3-5 -lists RA+1 requests processed by

MTR-CPUMTR PROGRAM MODE REQUESTS

-Storage move
Process down machine

| l

| |

| Process intermachine function |

| request |

| Move ECS storage |
3-7

TABLE 3-5. RA+1 REQUESTS PROCESSED BY CPUMTR

Abort control point

|
I
|
| cPm Resident CPM functions:
| 16 Read error exit
| 24 Read job control word
| 25 Write job control word
| 32 Return user number
| 33 Read FL control word
37 Read TELEX subsystem
43 Read special entry point word
| 45 Read first lLoader control word
50 Read machine ID word
55 Read ECS FL control word
i 61 Read Llist of files pointer
62 Set List of files pointer
END

|

I

| |
| |
| |
I |
I |
| I
| |
l |
| |
| |
I I
I |
I |
| |
| Terminate current CPU program |
LDR | Request overlay load |
| |
| I
| |
I |
I |
I |
l |
| |
| |
I |
| |
| |
| |
I I

|

| LoV Request Lloader action

| LOD Request autoload of relocatable File

| MEM Request memory

| MSG Send message to system

| PFL Set (P) and change field length

| RCL Place program on recall

| RFL Request field length

| RSB Read subsystem program block *2

} SIC Send intercontrol point block to subsystem
*1

| spc Process special PP requests *3

| TIM Request system time

| XJP Initiate subcontrol point *4

| XJR Process exchange jump request

*1 Honored for jobs with QP Less than MXPS, SSJ= or
access bit (CSTP) set :

*2 Honored for jobs with QP greater than MXPS or $SJ=

*3 Honored for jobs with QP greater than MXPS

*4 Allowed only when subcontrol points are enabled
(SUBCP block is Lloaded)

60454300 B ‘ 3-8

MTR FUNCTIONS

The following paragraphs describe the MTR functions. The format
for the calls are contained in the NOS Systems Instant and the
external documentation of. MTR and CPUMTR us1ng the control
statement DOCMENT.

CCHM (3) - CHECK CHANNEL

This function allows a PP to have a channel checked for
availability. If the channel is free, it is assigned; if not,
“the channel requested bit (bit 1) in the CST is set. Control is
returned to the PP immediately (compare with RCHM).

DCHM (4) - DROP CHANNEL

Sets assignment for this channel in the CST bits 10-7 to zero.

It is used to release the channel reserved with RCHM or CCHM.
This function is used by the PPR routine DCH. This also does a
release unit reserve function when the device is MS and the R
option is set for a dual access controller. Refer to the CMRDECK
mass storage EST entry in the NOS Installation Handbook.

DEQM (5) - DROP EQUIPMENT

This function releases the equipment by setting bits 52-47 of the
EST entry to zero. It is used to release equipment reserved with
the AEQM or REQM. ' '

DFMM -(6) - PROCESS DAYFILE MESSAGE

This function allows a PP to send a dayf1Le message to any of the
system or control point dayfiles. Used by the PPR routine DFM.

SEQM (10> - SET EQUIPMENT PARAMETERS

Depending upon subfunct1on code, this function performs one of the
following. - :

ON equipment (set bit 23 of EST)
OFF equipment (clear bit 23 of EST)
Set channels for access in EST

Set equipment mnemonic in EST

Set byte O of EST

Set byte of EST

Set byte of EST

Set byte of EST

Set byte of EST

oOo~NoOWVEHEWNN-=20

-
U -

60454300 B 3-9

PRLM (11) - PAUSE FOR STORAGE RELOCATION

Any PP which determines that its control point has a storage move
request pending (CMCL word 57 byte 0) must issue this function.
MTR will not move the control point until all PP activity for
that control point has recognized the requested move via PRLM,
DSWM, or DFMM. This function is used by the PPR routine PRL.

RCHM (12) - REQUEST CHANNEL

This function sets the CST bits 10-7 to the control point number,
thereby assigning the channel for the up to four channels
available. The RCHM will not return control to the PP until the
channel can be reserved. Compare with the CCHM which returns
control whether the channel can be assigned or not.

REMM (13) - REQUEST EXIT MODE

This function sets the exit mode in the exchange package to the
specified 12 bits.

REQM (14) - REQUEST EQUIPMENT

This function allows the PP to request an equipment. Control is
returned whether the equipment is available or not.

ROCM (15) - ROLLOUT CONTROL POINT

This function sets the rollout requested bit (bit 24 in word JCIW
of the control point area). A PP routine cannot force a job to
rollout immediately; it must request rollout action. CPUMTR
determines when the job may be rolled out and 1AJ is then called.
RPRM (16) - REQUEST PRIORITY

This function sets the CPU or queue priority in the control point
area (word JCIW).

RJSM (17) - REQUEST JOB SEQUENCE NUMBER

This function returns the current job sequence number from
central memory word JSNL, and increases it by one.

60454300 B 3-10

RSTM (21),- REQUEST STORAGE

 This funct1on allows a PP rout1ne to ‘change the FL/FLE at a

control point. The request is. the amount of FL desired at the
control point. If the request is for the same amount of FL or
Less than that already ass1gned, then the request is honored
31mmed1ately (unless for the last control point). If the request
is for an Jncrease, storage moves may be necessary. Control is
returned immediateLy in any case. 1f a PP wishes to reduce FL it
should make this request. If it wishes to increase FL it should
use the common routine COMPRSI to make increase storage requests.

NOTE

The control point may be moved while this function is
pending.

SRM (23) - DSD REQUESTS

This function is only accepted from DSD; any other PP will be
hung. When the operator types in STEP, UNSTEP, DATE, or TIME,
DSD issues this function. STEP mode forces MTR tao accept only one
function at a time under direction of DSD. MTR steps CPUMTR and
controls the processing of those functions (refer to SMSF). DSD
‘can specify whether to step the system or only one control point.
MTR reissues all CPUMTR functions that were stepped when an
unstep is issued from DSD. The subfunction to set emergency

step is also allowed from TMB. ‘

ECXM (24) - ECS TRANSFER

.Tﬁis function is used'to transfer data between ECS and CM. The
transfer is between a relative address in CM to/from a relative
address in ECS. The function also allows the specification of
an alternate response address. This allows the calling PP to
overlap other monitor functions with this function.

TGPM (25) - IAF/TELEX GET POT

This is used to get a pot chain from IAF/TELEX. It is useful
because the PP does not need to interrupt or start up IAF/TELEX
for the request.

TSEM (26) - PROCESS IAF/TELEX REQUEST

Used to fequest various procedures from IAF/TELEX.

DEPM (27) - DISK ERROR PROCESSOR
Used for mass storage error ppoceésihg}‘

DRCM (30) - DRIVER RECALL CPU

60454300 B 3

1

Used to issue an RCLM if the CPU is in periodic recall status.
This function allows the PP to request MTR to determine the CPU
status and issue an RCLM rather than do it itself. This request
does not require an exchange jump; therefore the PP needs only
to place the request in its OR and does not need to wait for it
to be processed. This is critical for mass storage or tape
drivers, that could lose a revolution or tape speed if it needed
to wait for a CPUMTR request. However, the routine must wait for
OR to clear before again issuing this function. Thus, mass
storage drivers must wait for OR to clear.

SCPM (31) - SELECT CPUS ALLOWABLE FOR JOB EXECUTION

Sets byte 4 of the JCIW word of the control point area to zero
for any CPU, one for CPU O only, and two for CPU 1 only. A
selection of CPU 1 is ignored if user ECS is assigned.

EATM (32) - ENTER/ACCESS SYSTEM EVENT TABLE

Enter or read events to or from system event table.

CPUMTR FUNCTIONS

ABTM (36) - ABORT CONTROL POINT

Abort the control point to which this PP is assigned. Sets PPET
error flag and performs a DPPM.

CCAM (37) - CHANGE CONTROL POINT ASSIGNMENT

Used to change the control point assignment for this PP. It
reduces the PP count in the control point at STSW bits 52-48 in
the old control point assignment, and increases it by one for
the new control point assignment.

CEFM (40) - CHANGE ERROR FLAG

Replaces bits 47-36 in STSW word of the control point area. It
is used to set or clear the error flag.

DCPM (471) - DROP CPU

If control point is in W status it is placed in zero status.
Since there is PP activity the control point will not be
advanced.

SFIM (42) - SET FNT INTERLOCK

Sets or clears an interlock bit for a particular FNT entry. The
interlock bit for each FNT entry is kept in the FNT interlock
table which is appended to the FNT. The interlock on an
individual FNT entry should be held for the shortest time
possible to avoid performance degradation.

60454300 A 3-12

This technique is used in the following circumstances.
e Bringing an input file into execution
e Performing a job advance
e Rolling in or rolling out a job
® Terminating a job
e Altering the FNT or system sector of a queued file
e Moving a file from one queue to another
e Assigning a queue file to a control point
DTKM (43) - DROP TRACKS

This is executed in program mode and is used to drop trailing
tracks from & track chain.

DPPM (44) - DROP PP

This is. the Llast function issued before a PP jumps to its idle
Loop. It signifies that this PP routine is done and the PP is
available for other assignments.

ECSM (45) - ECS TRANSFER

Used to get from 1 to 100B words transferred from ECS to/from
absolute or relative CM. Also used to set/clear flag register
and read display information for DSD/DIS.

RCLM (46) - RECALL CPU

Used to change the control point status from periodic recall to
CPU candidate; that is, X status to W status.

RCPM (47) - REQUEST CPU

Used to start the CPU for this control point and set the control
point status to W. This function is also used by a PP program
called with autorecall to bring the CPU back into execution to
its control point. ' :

RDCM (50) - REQUEST DATA CONVERSION

Used to convert 30-bit integer to FORTRAN F10.3
display code format.

IAUM (51) - INTERLOCK AND UPDATE
Used to interlock and update fieLds’in CMR or ECS.

ACTM (52) - ACCOUNTING FUNCTIONS

60454300 B - 3=13

Performs the following accounting functions.
o Begin account block
o Compute SRU multipliers
® Accounting block change
e Compute and convert elapsed SRUs
e Compute accumulators
e Increment accumulator
RPPM (53) - REQUEST PP

Used to start a PP routine in some other PP. The response
indicates whether the PP was assigned or none available. A PP
can read PPAL and determine in advance if a PP is available.
This saves time and overhead.

RSJM (54) -~ REQUEST JOB SCHEDULER

This function is used to interlock scheduler calls, so that only
one copy of 18J is running at one time in the system.

RTCM (55) - REQUEST TRACK CHAIN

This is executed in program mode. Allows the PP routine to
request a specified number of sectors and reserve the proper
track chain. When no equipmet is specified one is selected based
upon the allocation parameter in the call.

SFBM (56) ~ SET FILE BUSY

Used to interlock the FNT/FST entry for a specific file. A PP
issues this function to reserve the file and when done releases
the file by setting bit 0 of the FST to one. SFBM sets bit O of
the FST to zero. This function is used to interlock any word in
CM, such as PFNL, or any word in the MST., If SFBM is issued for
an FNT/FST, the file name word must also be provided to check
that another PP has not dropped the file just after the PP
issuing SFBM found it. In both the FST and the FET, the file is
busy when bit 0 is clear.

STBM (57) - SET TRACK BIT

This is executed in monitor mode unless the system control point
is active; then it is done in program mode. Used to set the w,
d, or 1 bits in the TRT.

UADM (60) - UPDATE ACCOUNTING AND DROP

SPLM (61) - SEARCH PERIPHERAL LIBRARY

Used to search PLD for a PP routine.

60454300 A 3-14

JACM (62) - JOB ADVANCEMENT CONTROL

Options 1, 2, 3, and 4 are used to set or clear the job
advancement flag at a control point with implied DPPM if desired.
PP routines should not call 1AJ directly for job advancement.
CPUMTR will decide when a job needs to be advanced and call 1AJ
to the job. 1AJ then decides if the control point needs
advancement or rollout.

DLKM (63) - DELINK TRACKS

This is executed in program mode. DLKM is used to drop
intervening tracks on an existing file chain and relink the file
chain properly. An example is PFM delinking an indirect access
file chain in response to a user issuing a PURGE on a file which
is lLong enough to completely cover several tracks. PFM attempts
to keep the indirect access file chain to a minimum size when
possible.

TDAM (64) - TRANSFER DATA BETWEEN MESSAGE BUFFER, JOB

Allows a PP to transfer up to 6 words from/to the message buffer
to/from a job. The address to transfer to/from is a relative
address. The transfer must be to/from a subsystem. It
alleviates the problem of a PP finding the subsystem and deciding
if it is ready for reception of data. This is equivalent to the
SIC/RSB facility except no intercontrol point communication area
is necessary.

TIOM (65) - TAPE I/0 PROCESSOR

This function updates the tape accounting information; that is,
the number of blocks transferred in MTUW word 53 of the control
point area. Exit from this function is to CCAM to change the PP
assignment to MAGNET's control point. If the completion code is
nonzero, the specified UDT word is cleared, the FET is set
complete, and the tape activity count is decremented in STSW
‘word, byte 2. Routine 1MT uses this function when it completes a
read/write request on a tape. Since the UDT and the FET must be
changed, and they are at two different control points, this
function prevents any probLem by keeping the control point and
MAGNET from interfering with each other. UDT must be cleared
before the FET is set complete or an I/0 sequence error could
OCCUrF.

RTLM (66) - REQUEST CPU TIME LIMIT

Used to change the CPU time Llimit in CTLW word, bytes 2, 3, and 4
jn the control point area. The time Limit exceeded flag in ACTW
word, byte 0 is cleared. '

LCEM (67) - LOAD CENTRAL PROGRAM

This is executed in program mode. Used to lLoad an ECS or CM
resident routine into the control point field length.

60454300 B o : 3-15

CSTM (70) - CLEAR STORAGE

Used to clear a specified amount of CM or ECS. When clearing an
FNT/FST entry, CSTM can also be used to set the control point
area FNT interlock (ECSW word, bit 47).

CKSM (71) - CHECKSUM SPECIFIED AREA

Checksum area from FWA to LWA+1 and compare to checksum in
message buffer (MB).

LDAM (72) - LOAD DISK ADDRESS

Used to convert from logical to physical addresses for 844
equipments.

VMSM (73) - VALIDATE MASS STORAGE

This function validates a mass storage device's MST and TRT by
checking track reservation and preserved file track count
against the count in the MST. Also, critical track chains are
validated.

PIOM (74) - PP I0 VIA CPU

This function is used by the 6DE driver to transfer data to/from
ECS via the PP buffers immediately preceding CPUMTR.

MXFM (76) - MAXIMUM FUNCTION NUMBER

This is used by a PP when it desires to hang itself for some
reason it considers catastrophic. CPUMTR will see that is is out
of range and will hang the PP. Whenever a PP issues this
function it should allow the analyst to clear the PP's output
register and complete its operation gracefully.

A PP is hung when one of the monitors determines that a function
is illegal. For example, function out of range, or RCHM on some
nonexistent channel. If CPUMTR hangs a PP the message PP HUNG is
displayed at the system control point.

If MTR hangs a PP the message is HUNG PP.

In any case the packed date and time of the hang is placed in
MB+5.

MTR FUNCTIONS TO CPUMTR

These are special functions and the request is transmitted via
the X0 register instead of MTR's output register.

(0) - RA REQUEST
This function tells CPUMTR that some control point has an RA+1

request. This is used for systems where the XJ is not available
or the user's program is not doing an XJ. Upon entry X0 is zero.

60454300 B 3-16

ARTF (1) - ADVANCE RUNNING TIMES

Update running times. Updates RTCL in CMR and ACTW in the
control point area and sets time limit exceeded flag if time
Limit has been exceeded. It also checks for P equal to 0 and
program stop. CPUMTR checks the active control point and the
instruction P points to.

59 : 17 0

entry (XO) | o ARTF

IARF (2) - INITIATE AUTORECALL

MTR while in the routine PPL (process PP recalls) checks RA+1 of
a control point in autorecall and if RA+1 is set with autorecall
requested, it reissues the PP request.

If a PP. routine who is called with autorecall finds that it
cannot process the request it was called for at this time, it can
copy its IR back to RA+1 if the control point is in R status.
When MTR goes through its PPL routine it will find the request
and have CPUMTR reissue it to a PP. ‘

59 35 23 17 0

entry (X0) 0 cpa fwa 0 IARF

EPRF (3) - ENTER PROGRAM MODE REQUEST

59 35 23 17 0

entry (XO) 0 pr 0 MSTF

pr Program mode request number as defined in
COMSMTR

MRAF (4) - MODIFY RA

CPUMTR changes RA in STSW and the entfy point by the specified
amount. :

59 47 - 35 17 0

entry (X0) in/100 0 1 cpa fwa MRAF

in Value to change RA

60454300 B | 3-17

MFLF (5) - MODIFY FL

CPUMTR changes fL in STSW and the entry point by the specified
amount.

59 47 35 17 0

entry (X0) in/100 0 cpa fwa MFLF

SCSF (6) - SET (RESTORE) CPU STATUS

CPUMTR places the specified status in the STSW word. This is used
when MTR issues the DCPM function. The status is returned to MTR
to be restored after the control point is storage moved. When
MTR is ready to restart the CPU it issues this function restoring
the former status.

Functions EPRF, MRAF, and SCSF may all be used when a control
point needs to have its FL changed via the RSTM function. If MTR
has to move the control point it issues the DCPM and saves the
status, then issues the EPRF for the move. If no storage move is
required, then the MRAF is used.

Finally, it issues SCSF to restore the former status. When a
control point is going to be moved, the only criterion for that
move is no PP activity, so the control point could be in any
status when MTR is ready to make the move, and after the move,
the proper status must be restored.

59 47 35 17 0

entry {XO) status 0 cpa fwa SCSF

SMSF (7) - SET MONITOR STEP

This allows CPUMTR to disable its automatic processing of monitor
functions and to wait for MTR to indicate which function to
process. SMSF and CMSF are used to set and clear the system STEP
mode. Refer to DSRM.

59 17 0

entry (XO) 0 SMSF

60454300 B 3-18

CMSF ¢10) - CLEAR MONITOR STEP

Reenables automatic processing of monitor functions.

59 ' 17 0

entry (X0) 0 ' CMSF

ROLF (11) - SET ROLLOUT FLAG AND CHECK JOB ADVANCE

This dual timing is used to set the rollout flag and check for
job advancement.

59 35 17 : 0

entry (XO) o) cpa fwa ROLF

ACSM (12) - ADVANCE CPU JOB SUITCH

Used to change the control point asswgnment of the CPU. It is
used in the MTR routine JSW to process CPU job switching. This
involves exchanging the CPU from one control point to another
(slot time exceeded processing).

59 35 17 0

entry (XO) 0 cpa fwa ACSM

PCXF (13) - PROCESS CPU EXCHANGE REQUEST

1f CPUMTR is executing in one CPU and needs to be in the other
CPU it will inform MTR via the CX words and XJ. MTR then issues
this request to the other CPU. This is done in the AVC advance
clock routine, which is the one section of MTR that must execute
at lLeast every 4 milliseconds. For example, consider function
ABTM. PPR cannot d1st1ngu1sh which CPU its control point is in,
so it starts CPUMTR up in CPO. If the control point to be aborted
js in CP1, then CPUMTR must get itself into CP1 in order to get
the control point out of CP1.

MTR,processésvpool PP OR requests as follows.

ne.
I1f the CEJ/MEJ is available or is disabled, MTR checks all OR

requests. If a request is for CPUMTR, MTR jumps to its CPR routi
CPR exchanges in CPUMTR for that PP.

60454300 B 3-19 I

If the CEJ/MEJ is available, MTR ignores any CPUMTR request,
since the PP must issue its own MXN; that is, CPO cannot stop
CP1, so the PCXF alternate exchange request is made.

59 17 0

entry (XO) 0 PCXF

ARMF(14) - ADVANCE RUNNING TIME AND MMF PROCESSING
This function is called once every second by MTR to:
e Status flag register bits
e Write real-time clock to ECS

¢ Read other mainframe clocks in ECS (every two seconds)

59 35 23 17 0

entry (XO) ¢} s o} ARMF

MREF (15) - MODIFY ECS RA

CPUMTR changes the ECS RA in ECSW and the exchange package by the
amount specified.

59 47 35 23 17 0

entry (XO) in/1000 o) CPA FWA 0 MREF

MFEF (16) - MODIFY ECS FL

CPUMTR changes the ECS FL in ECSW and the exchange package by
the amount specified.

39 47 35 23 17 0

entry (XO) in/1000 0 CPA FWA 0] MFEF

60454300 B 3-20

CPUMTR STRUCTURE

During deadstart, CPUMTR is lLoaded into CMR with the appropriate
blLocks for a particular environment. For instance, if ECS is
available, the block of code pertaining to ECS is loaded; if
multimainframe has been selected, the associated MMF code is
Loaded. Since unnecessary blocks of code are not Loaded, the size
of CMR is optimally maintained. Optional blocks of code which
might be Loaded include the following.

Block Purpose

cMU Move storage with compare/move unit
(single CPU system, only)

ocmu Move storage with registers (for
non-CMU machines)

CMUMTR Monitor mode CMU move

OCMUMTR Monitor mode move storage with
registers

CP176 Code to process CYBER 170 Model 176
hardware

DCP pual CPU operations

MMF Multimainframe processing routines

OMMF ~Processing routines without MMF

SCP System control point facility

SUBCP Subcontrol point processing

UEC ‘User ECS routines

VMS Validate mass storage

ECS ECS processing routines

ECSBUF ECS buffer space

MMFBUF MMF buffer space

EXPACS Exchange packages

CEJ Central exchange enabled

XP176 Exchange packages for the CYBER 170
Model 176

OCEF CEJ disabled

PRESET Preset CPUMTR (overlaid by PPU

exchange packages)

CPUMTR has the following structure.
@ MTR main program. Entry point from CPU program.
e Utility subroutines

e CPR - CPU program request processing. Requests are passed
through RA+1 (refer to table 3-5).

e PMN - MTR request processor (refer to MTR Functions to
CPUMTR) .

60454300 B 3

21

® PPR - PPU request processor (functions Listed lLater in
this section).

® Program mode subroutines.

e MNR - Monitor request processor. Program mode
processors not initiated by PP functions.

e Tables:
TPMN PPU monitor requests

TPPR PPU request table

MTR STRUCTURE

MTR is loaded into PPO at deadstart time and
remains there for the duration of system execution.

MTR performs the following functions:
® Processes certain PP requests
e Allocates central memory and user ECS
e Maintains the real-time clock
@ Checks (RA+1) of active CPU programs for system requests
o Checks OR of each pool PP

e Checks the SCR (CYBER 170) or ILR (CYBER 70 or 6000) for
errors which require 1MB processing.

STARTING MTR AT DEADSTART TIME
MTR is Lloaded in PPO. The first location of the code is:
TO CON PRS-1
This forces the constant PRS-1 to fall into TO. At the end of
the load, (P) is set to (TO0)+1 which will be (P)=PRS, the MTR

preset routine. PRS presets all tables and constants.

PRS overlays itself with tables and buffers.

CPUMTR/MTR FLOWCHARTS

~Figures 3-5 through 3-22 flowchart the main routines used by MTR
and CPUMTR.

60454300 B ‘ 3=-22

DSD

check PPsj 2 thrqugh n

*1

n=n+1

yes n<

no. of PPs

MTR). D
1 Y no

write *9 cce

channel | check .@

table - . central YA
pragram

#1 This simulated loop is a DUP statement in MTR code.

*2 When MTR releases a channel, it sets a flag. At this time,
the reservation byte in the channel table in CMR is cleared.

Figure 3-5. Main Loop for MTR

60454300 A 3-23

time to
switch CPU

select
new joh
(SNJ)

60454300 A

time to
check PP
recall

no

check PP
recall PPL

Figure 3-6.

check
program
recall

(x) status
queue

MTR

Process Time Dependent Scanners

REAL-TIME CLOCK

The real-time clock starts with power on and runs continuously.
It may be read by any peripheral processor with an input to A
(70) dinstruction from channel 14B. This channel is separate from
the data channels. :

The clock period is 4096 (10000B) micro seconds. It is a 12-bit
register that is advanced each microsecond from O through 7777B.
When it reaches 7777B, it starts over at 0. It must, therefore,
be read at least every 4.096 milliseconds for accurate timing.

TIME KEEPING

MTR controls all time—-keeping activities with routines TIM, AVC,
and AVT.

Routine TIM reads the real-time clock and updates RTCL (the
central memory real-time clock). This routine must be entered
at Lleast once every millisecond. When one second has elapsed,
the calls to AVT, ARTF, or ARMF are enabled in routine AVC.

Routine AVC has no time—keeping activity until one second has
elapsed. The calls to AVT, ARMF, or ARTF are then enabled by
TIM.

'Routine AVT advances the time of day and date in words JDAL,
PDTL, TIML, and DTEL 4in CMR.

60454300 A ' 3

25

Exit, unless time-
keeping enabled
by TIM detects
one-second elapse

/

advance
second count
and store in
RTC1

[
AVT

v

read scan times
from MSCL

N

i
CPR

A) = ARTF
ARMF (MME)

\

(
CAJ

/\

CPR

CPU 1
(A) = ARTF

TN
s 2

/

read scan
times from
MSCL

\

return

* 1 Advance CPU O time. Accumulated control point time for

active control point at CPU 0.

x2 MSCL can be dynamically set from the console. ART reads it

every second.

Figure 3-7. AVC Advance Running Times

60454300 A

/ _CPR \

no (A) ='ACSF
- advance CPU
switch

oid
job idle
yes.

/ __CPR \
(A) = ACSF +
100008 advance
CPU switch
= 2
return
read job
control word
(JCIW)
read CPUO
status from
(ACPL)
no
yes cPUO read CPU1 CPU1
I active on this | status from active on this
cp (ACPL +1) cP

*1 CPU O active job CPU priority greater than this control point
priority.

*2 CPU 1 active job CPU priority greater than this control point
priority.
Figure 3-8. JSW - Process CPU Job Switching (CPU Slot Time)

60454300 A 3-27

job
advancement

yas

all CPs
checked

read joh
control
JCIW

rollout
flag set

get CP
status

cp read
requesting (RA +1)
auto recall of CP

Figure 3-9.

60454300 A

set

read PP
recall register
RLPW

return

n

FTN

/[0 N\ o
\ RPPM /

/ CPR

AN

PP
auto recall (A) = IARF
request initiate
auto recall
/
return)

PPL - Process PP Recalls

3-28

PP function requests are made to MTR by placing the function code
in byte 0 of the PP's OR. When the request is complete, MTR

clears byte 0 of the OR.

(i)

read DSDs IR
and set CP
assignment

has
function
.been previously
processed

yes

move
in progress

indicate
storage move
in progress

CPUMTR
request

f CPR

\ process request

*1 When DSD wants to do an action for a control point (such as
n.XXX), it temporarily attaches itself to that control point
by placing the control point number in its IR; it then makes
the request. s '

*2 If this control point is moving, the status must be set.

Figure 3-10. DSD PP Function Request

50454300 A

not MTR
reguest

set
appropriate
processor

y

exit to
proper processor

return from processor

FNZ — if successful
@ FNR — if unsuccessful

clear OR
()=
/ cee

check central
PGM
@ -
! MTR

* 1 If request illegal then effectively hang PP since OR is never
cleared, this will not display PP hung at system PP.

Figure 3-10. DSD PP Function Request (Continued)

60454300 A 3-30

If any of the functions requested desire an illegal operation
(for example, DCHM drop channel wishes to drop a channel which
does not exist) then it will jump to this routine.

O

- set packed
time and date
in MB+6

/

display
message
HUNG PP

/ *q
FNR

*1 Do not clear OR and thereby hang this PP.

Figure 3-11. HNG - Hang PP and Display Message

60454300 A ‘ 3-31

set

request ~ CM Entry: (A) = function number

(CM+1,...,CM+4) = parameters
{CP) = CTR. pt.area address

+ Exit: {cm,..., CM +4) = response
se} g_?N":T_hf' CM is FTN request word.
CN is:CPR request word.
Y
store MTR IR

y

(CM,..., CM +4)
-MTR OR

y

CPR
request PP
function

1 4
AVC

/ AN
\ advance clock]

return)

read OR

Figure 3-12. FTN - Process Monitor Function

60454300 A 3-32

check storage|move status-

any
move in
progress

read status

'

move
complete

error
on move

no

no
cr1:P vy check CPU status

[/ Ave \

\ / set error flag,
\

clear CPY status

y ‘ <

*1 L
advance VST
- CPU number /- L
process
completion

' all
CPUs checked

The contents of the RA+1 for the control point at this CPU are
checked and CPUMTR is requsted to process the request. The
program address (P) is. checked and if = 0, CPUMTR is requested.

* 1 Check active control point. in CPU 0; then CPU 1 gets control
point number in CPU O. ‘

Figure 3-13. CCP - Check Central Program

60454300 A , 3-33

read active
CPU address
(ACPL)

Y

get CP
address and
read CP
status (STSW)

e

@ yes

system
CP request

time
limit for
subcontrol
point

suhcontrol
point

get RA + 1
from CP

get RA + 1
from
subcontrol point

v

Free»

yes
*1 A user control point is running; that is, this is not
CPUMTR.
*2 If CEJ/MEJ available, go to CCP1; if not, go to XJd1.
*3 If (RA) = 0, this is CPUMTR and is ignored.

Figure 3-13.

60454300 A

CCP - Check Central Program (Continued)

3-34

request CPUMTR
to process
{RA + 1) request

no CEJ /MEJ option
clear request

word » CN,
CN+1,CN+2

T)
SRS } read program

request RA + 1 ~ | mode status
check »~ CPR ' l

CPR XCHG
request set
: request is null
check next CPU

*1 No if (PX)=0; 'yes if (PX) nonzero. PX is defined in CPUMTR.
*2 Use PR defined in CPUMTR. :

Figure 3-13. CCP - Check Central Program (Continued)

60454300 A 3-35

store request
in CNT'4 set up MXN inst

to correct CPU

\

wait exchange y

package, (WXP),

enter request “(\:1)-;) ';PP[:\
‘
*1
store P = PMN (AD) !
(BO) #0
in exchange package MXN
exchange to
v CPUMTR
‘ *9
store (X0) =
(CN, CN +4) Y

read P, AD, BO
from PP EPA
\

set exchange
wait timer

MXN

*1 This request will be processed by CPUMTR at PMN.
*2 PMN expects the request in XO.
*3 If CEJ/MEJ option available, use code on this page.

Figure 3-14. CPR-CPUMTR Request Processor

60454300 A

3-36

Entry: (A) bits 0-11 = request
12-17 = CPU number
(CN, . . ., CN+2) = parameters

yes check (MA)
A in PP EPA
, *1
(RA+1)
check ves A
\i *2

CPUMTR
completed

has
exchange

wait timed
out

] yes

have CPUMTR
note exchange
request

*1 Was this an RA+1 check. If no and exchange occurred, CPUMTR

is now running and it will automatically process this
request. If not, reissue the exchange.
*2 There is a delay Lloop. '

CPR-CPUMTR Request Processor (Continued)
3-37

Figure 3-14.

60454300 A

set EXN insts.
to reflect the
correct CPU

!

A = PPO
exchange package
address

Y

EXN -
XCHG to
CPUMTR

Li

* 1

check
on CPUMTR

one-word
word; that is, a PS.

CPUMTR
ready

*1

Y

read MTR/
CPUMTR
interlock word

Y

set (A) = exchange
address
from MTRL

Y

EXN
XCHG to
new job

= CPSL.

60454300 A

When CPUMTR has completed,
the control point to be started
idle loop at CPSL
is doing

return

778 in CMR,

MTRL = 768 in CMR

it places the exchange address of
in MTRL and jumps to a

is a zero

an RPN 0 and waiting for

Figure 3-15. XCHG - The CPU with CEJ/MEJ Not Available

3-38

60454300 A

MTRP entry: (X7) = reply word to be set
into cailing PPs
output register

copy reply
into PPs OR

MTRX entry: (B2) = address of exchange
package for control

point to be exchanged
into CPU

Xd B2
" exchange to a
control point

MTR exit: (P) = MTR

Figure 3-16. CPUMTR Return Points

MTR

get RA from EP

and read RA
Entry: (A0) = CPU number (0 or 1)
(B1) = 1
PP (B2) = address of caller'’s EP
exchange (B7) = control point area address
reguested

If CPn exchanged itself, then (B2) = (B7)

and EP will be in CPA. If CPn was exchanged
g::iizet ?: r;trol by MTR or some other pool PP, then (B2) =
status queue the address of the PP EPA which performed
the exchange and (B7) = CPA.

A

begin new job

Figure 3-17. MTR - Exchange Entry From A CPU Program

60454300 A 3-40

read
RA + 1

Check for monitor request. Is this exchange a CPUMTR
EP or a CP EP.

Process the RA + 1 request.

read P (B2)
=P in EP,
set (X7) =2

Exchange CP back in. CP wanted a short pause.

Set error flag CPU detected on ARITH error. Uses
(B7) = CPA, (X7) = error code. SEF will abort the
CP program on ARITH error.

60454300 A

60454300 A

read PX

no

yes

check special
request for
program maode
monitor

(PP request)

read PR
set (PX} =40

yes

Figure 3-18.

PX is FWA of CPUMTR code and is the program mode exit
request. It is set when program mode portion of CPUMTR
has determined that this CP job is complete.

This is to determine if a CP or if the
system CP (CPUMTR program mode)

was interrupted.

PR is a pointer to a stack of requests
for program mode execution (that is,
system CP queue),

¢

W Let system CP continue running.

ECP end central program.
Uses (B7) = control point area address
(X0) = status bits
By setting (X0) = 0 we set CP status = 0 or not active.

CHECK - For System CP Request

3-42

60454300 A

read subcontrol.
point status (SCPS)
from hit 58 ‘
of STSW in CPA

SCPS 10
| no .

Entry: (B3) = RA
(B7) = CPA
(X8) = (RA+1)
(A2) = address of RA in EP
(AB) = RA+1

| BCE begin control point executive

valid
request

process reguest

APJ

process CPU call error

Figure 3-19. Process - RA+1 Requests

*

*2

did MTR send aSm—e

was PP type yes NN
requester request /
the system
Y read OR and
get address *2 get request
of appropriate
PP request
(RA+1)=0
processor unpack
of requestor ok
Y

exit to '
\ proper processor PPR
0

MXPF is maximum number a MTR request can be, so test is (X0)
- MXPF > 0, then go to PMNZ2.

Those processors which require program mode CPUMTR will exit
via EPR. EPR will check to see if the system control point
was interrupted for this request and if so, will exit to
MTRX. If control point n was interrupted, then it will

exit to BCP1, which will place this now deactivated control
point into W status, and then exit to MTRX.

Figure 3-20. PMN - Exchange Entry From MTR

60454300 A 3-44

Entry: (AD)
PPR (B2)

address of calling PPs OR
address of calling PPs EP

read OR -

\

unpack
request

PPR
0

~ Each processor will exit:
select to MTRP with reply word in (X7)
appropriate for PPUs OR if necessary,

request
legal

processor
I ~ OR -
if no reply word necessary, then
‘;I)‘:::;apn‘;e . exit to MTRX.
request

status

exit to proper
processor

I»

If the processor requires program mode CPUMTR, the macro PPR will
generate a queue entry and set up the exchange package, then
jumps to PRG, sees no request, and jumps to PRG1.

*1 Check to see if request (which is a number) is larger than

the maximum.

*2 Hang PP by not clearing OR, and display message PP HUNG at
system control point.

bFigure 3-21. PPR - Exchange Entry for Pool PPs

60454300 A 3-45

PRG CPUMTR starts the program mode portion
1 at PRG in program mode. This is the

standard exit for program mode CPUMTR.

. e

Yy

set request
exit PX=1

Exchange to CPUMTR in monitor mode. This
will force (P) = PRG in EP in the system CP
CPA, so that the next time CPUMTR starts up
the system CP, execution in program mode

@ will begin at PRG.

get request
word PR

request
(PR) #0

monitor
request

no, hence, it is a PP request.

select
appropriate
processor

exit to

proper
processor

figure 3-22. PRG - Exchange Entry for System CP (Program Mode
CPUMTR)

60454300 A 3-46

IDL, IDL1T - CPUO AND CPU1 IDLE LOOPS

The exchange package for IDL is loaded at the end of CPUMTR

IDL1 and its exchange package are located in the dual CPU block.

Py =2 - N
| C(RA) = location of IDL in CPUMTR |
| ¢CFLY =5 |
| (MAY) = location of this EP |
| CEM) = 7007 |

|

|

lall other register = 0

- s > wm e Y. e WA s Wm e R We we em e

| Py =2 S : |
| (RA) = location of IDL1 in CPUMTR]
| DCP block |
| CFLY = 5 |
] (MA) = Location of this EP |
| CEM) = 7007 ' |
| : |
|akt other register = 0 |
Program IDL Program IDL1
0000 IDL CON O (RA) for idle IDL1. CON O
routines
0001 CON O (RA+1=0) for CON O
idle routine
never any
requests
0002 EQ 2 jump to-itself EQ 2

Program IDL and IDL1 runs until a PP or MTR interrupts them and
exchanges CPUMTR into the CPU, If CPUMTR finds no other jobs to
run, it exchanges IDL or IDL1 back into the CPU.

CPUMTR SEGMENTATION

A significant amount of code is required in CPUMTR to support a
multimainframe environment which is not needed by sites not
utilizing this feature. Since CPUMTR resides 4n central memory,
it is desirable to provide a mechanism whereby code associated
with a particular feature (in this case multimainframe) may be
optionally loaded or discarded at system deadstart time.

60454300 A 3-47

CPUMTR accomodates blocks of code that may be optionally loaded.
These blocks of code are placed into labeled common by USE cards.
Blocks come in two types. One type always requires the presence
of an associated block and one of the two blocks will always be
Loaded. The other type of block has no associated block and with
either be loaded or discarded by CPUMLD. For example, if OMMF is
the name of an associated block which is lLoaded when MMF
processing is desired, then OMMF is loaded in its place if MMF
processing is not desired. The convention therefore is to place
a zero in front of the block name for the option-not-present
block. Any given feature may have as many blocks associated with
it as is necessary with any number of them being loaded.

A CPU program, CPUMLD, lLoads the desired CPUMTR blocks. CPUMLD
is a simple relocating Loader which reads in and lLoads the
segments required to utilize any optional feature selected during
the pre-deadstart process. This covers the case of wanting one
set of code for environment A and another set for environment B.
STL loads CPUMLD and CPUMLD issues requests to STL to read in
CPUMTR from the deadstart tape.

EXCHANGE JUMPS

An installation may make use of the optional hardware
instructions MXN (monitor exchange) and XJ (exchange jump) or EXN
(exchange). NOS requires either the combination of MXN/XJ or
EXN.

Exchange jumps use an exchange package (refer to section 2).
CENTRAL PROCESSOR MONITOR

System functions are normally handled by the monitor located in a
peripheral processor. The CYBER 170/70 computer systems are
equipped with certain hardware capabilities to effectively
implement monitor activities in the central processor. Since the
central processor can reference extended core storage directly
for service routines, programs, and data, a central processor
monitor program to handle these and other functions is faster and
more efficient than a monitor residing in a peripheral processor.

60454300 A 3

48

The hardware elements of the CYBER 170/70 system which provide
the essentiaticapabit1ties for implementing a central processor
monitor are described in the foLLow1ng paragraphs.

Monitor Address Reg1ster (MA)

Contained in the exchange jump package (bits 53 through 36 of
word 6) is an 18-bit monitor address. Just as other central
processor operational registers are loaded during an exchange
operation, so is the monitor address register loaded with the
18-bit monitor address. This monitor address is the starting
address of the exchange package for an ensuing central exchange
jump instruction (except when the monitor flag bit is set).

Monitor Flag Bit

The central processor has, in the central memory control section,
a monitor flag bit. A master clear (deadstart) clears the
monitor flag bit. Any action thereafter on this bit is via the
monitor exchange or the central exchange jump instructions.
(There is no instruction with which to sample the status of this
bit directly and/or independently of these instructions.)

Mode Flag Bit CPU
Monitor mode 1 Not interruptable

Program mode - 0 “Interruptable

Central and Monitor Exchange”Jump Instructions

With the CEJ/MEJ option two instructions exist for central
processor monitor implementation. The first, XJ, is executable
by the central processor and the second, MXN, is executable by
the peripheral processors. These instructions are as detailed in
the COMPASS Reference Manual.

The XJ instruction unconditionally exchange jumps the central
processor, regardless of the state of the monitor flag bit. The
instruction action differs, however, depend1ng on whether the
monitor flag is set or clear. Operation is as follows:

e Monitar flag bit clear

The starting address for the exchange is taken from the
18-bit monitor address register. This starting address is
an absolute address. During the exchange, the monitor
flag bit is set (MF=1)

e Monitor flag bit set
The starting address for the exchange is the 18- bit
result formed by adding K to the content of register Bj.

This starting address is an absolute address. During the
exchange, the monitor flag is cleared.

60454300 A 3-49

The MXN instruction, typically used to initiate central processor
monitor activity, is a conditional exchange jump to the central
processor. If the monitor flag bit is set, this instruction acts
as a pass instruction. The starting address for this exchange is
the 18-bit address held in the peripheral processor A register.
(The peripheral processor program must have lLoaded A with an
appropriate address prior to executing this instruction.) This
starting address is an absolute address.

In an installation without the MXN/XJ dinstruction set, the EXN is
the only exchange instruction available. It is a PP initiated
exchange jump which occurs independently of the mode of the CPU
and has no effect on the CPU mode. MTR is the only PP program
that may perform an EXN; it must simulate the MXN for all PPs in
the system and simulate XJ for the central processor. When MTR
detects a request for CPUMTR in a PP output register, it will EXN
to the exchange package for the pool PP which desires the
exchange jump.

NOTE

PP memory instruction layout is the same
as MXN.

Programming Notes

Any exchange to the exchange package loads the
contents of word 6 into the monitor address

register (other operational registers are similarly
loaded). Thus, any ensuing XJ instruction using the
contents of the monitor address register as a
starting address uses those contents as loaded.

The exchange packages for entering the central processor monitor
should usually have the reference address (RA) equal to 000000
and the field lLength equal to central memory size.

Since the monitor flag bit cannot be directly sampled, a program
cannot directly determine its state; hence, success in performing
a peripheral processor monitor exchange cannot readily be
predicted. Further, program control always is given to the next
instruction, whether or not the exchange is honored.

Table 3-6 summarizes the operational differences between the

normal exchange jump instruction EXN and the monitor and central
exchange jump, MXN and XJ.

60454300 A 3-50

TABLE 3

Instruction

| EXN
No 1260 (normal
CEJ/ |peripheral
MEJ |processor

|exchange

| jump)

| (peripheral
|processor

|monitor

lexchange

| jump)

| mmm e
With [xJ
CEJ/ |013 (central
MEJ |lexchange

| jump) with
Imonitor flag
lbit clear

[XJ K+(Bj)
|013

| Ccentral
|exchange

| jump) with
[monitor flag
|bit set

- ——— - — -

-6. EXCHANGE INSTRUCTION DIFFERENCE

1
I
]
1
]
1
i
]
1
1
1
}
[}
]
i
J
]
1
]
1
]
1
1
1
|

|[Effect | FWA of

lon |Exchange
|conditional/ |Monitor |Package
lUnconditional]Flag Bit lin CM

Unconditional|No effect on|Peripheral
Iflag |processor
|A register

i
i
1
]
i
]
i
]
i
[}
]
i
i
i
1
1
i
]
i
1)
1
]
i
4
1
i
|
|
1
1
]
|
i
|
[}
I

|conditional . |Sets flag |Peripheral
| Coccurs only | . |processor
|if monitor | |A register

|flag bit is |
|clear; passes|
|if flLag is |

|set) |
D | —mmmmmmmm e [mm o ee
|lunconditional|Sets flag |Central
| - |processor
| | Imonitor
| | |address
| | register
|

Unconditional|Clears flag |Address
| |[formed by

To determine whether the MXN took place:

1. Set BO (bits 0-17 of word Q)

777,

2. 1Initiate the monitor exchange (261).

3. Read BO from the exchange package
the monitor exchange was honored, BO in the exchange

in the exchange package

in central memory.

to

If

package will equal 000000. 1If the instruction passed,

this location

60454300 A

still holds 7777.

W
|

51

Different exchange packages should be used for central processor
exchanges and peripheral processor exchanges. This aids software
determination of which of two jumps (central or monitor exchange)
was executed when both were initiated at approximately the same
time.

Simultaneous exchange requests are resolved in favor of the
central processor.

The state of the monitor flag bit has no effect on the operation
of the normal PP exchange jump (260); nor has this instruction
any effect on the flag.

In addition, there may be CPUMTR requests which require more CPU
time than it is feasible for CPUMTR to use in monitor mode and
still ensure smooth system flow. For these requests, such as
DTKM (drop tracks), CPUMTR will queue them at the system control
point and exchange jump to this control point. The system
control point operates in program mode and is treated as any
other user program. If the system control point is interrupted
with another Long request, the request is placed in the system
control point queue and the system control point is restarted.
The system control point can be interrupted by any MXN from a PP.
However, because its CPU priority is the highest in the system
(100), it will always get the CPU back immediately. No other
control point will get the CPU if the system control points wants
it. '

Table 3-7 shows the correspondence between a control point,
control point address, and the exchange package MA for a system
configured to have 17B control points.

Table 3-8 shows all the system exchange packages and the entry
points into CPUMTR.

A control point will always have (MA) equal to its exchange
package address. Additional exchange packages are provided for
the two idle routines, subcontrol points, disabled central
exchange, return package, disabled central exchange program, and
a simulated exchange exit to monitor mode. These packages are
generated at the end of the CPUMTR code. PPO, MTR's exchange
package, is not contiguous with the other PP exchange packages.

60454300 A 3-52

FLOW OF EXCHANGES

The flow of exchanges are-illustrated and explained in Figures
3-25 through 3-28. The four types of exchanges are:

. e Pool PP
e MTR
e Control point program

e System control point

TABLE 3-7. CONTROL POINT/EXCHANGE PACKAGE

CORRESPONDENCE
1 control Point | Address | Exchange Package MA |
B U =
| 1 | 200 I 200 |
! 2 : 400 : 400 :
} 3 '; 600 : 600 :
i 4 { 1000 : 1000 E
} 5 | } 1200 { 1200 }
{ 6 | { 1400 { 1400 :
{ 7 { 1600 : 1600 ;
} 10 { 2000 { 2000 {
{ 11 »,{ 2200 { - 2200 ;
{ 12 { 2400 ' } 2400 :
} 13 } 2600 : 2600 ;
: 14 : 3000 : 3000 ;
l 15 { 3200 } 3200 :
I 16 } 3400 : 3400 :
{ 17 % 3600 { 3600 :
i 20 (System) i 4000 i 4000 i

60454300 A ' 3-53

TABLE 3-8. SYSTEM EXCHANGE PACKAGES

| ' I |Subcontrol]

| | |

| | | [Control - |Control |Points and|
| | |PPU |Point |[Points |Idle |
I |PPUs*2 |[Monitor |n+1 [1 thru n |Programs =
| == e e e e mmme—cmemem—m— e ee e ———————— —e— e ————
| [| I | [scx sub CP|
| | I | | |EPY I
	I				
	PXP PPU	MXP PPU	SXP Systenm	200B Control	SCX1 Sub
	CcPP2)	Monitor	Control Point	Point 1 lcP EP2	
	Exchange	Exchange	n+1 Exchange	Exchange	
	Package	Package	Package	Package	
		¢cPPOD	o	I	
	°			°	
Graphic	°			®	IXP IDLE
Repre-	°			°	cPUO
senta-	I	I			
tion I			I		
	PPUCPPNR)]	n*2008 Control	IXP1 IDLE	
7	Exchange			Point n	crPu1
	Package			[Exchange	
’				Package	:
signi~-	P=PPR	P=PMN	P=PRG	P=CP Prog	sub cP P=
ficant	MA=zero	MA=zero	MA=System	P address	MTR
Content	B2=address	B2=MXP	Control	MA=This	MA=SCX
J]of PPi EP		Point	Control	SCX1	
	(PXP+(i=2)		Area	Point	B2=SCX,
[*218B)		Address	Area	SCX1
			=SXP	Address	IDLE P=
				=addr. of	didle I
				CPi XJPKG	Loop addr.
				Ci*x2008B1]	czpL,I0L1)
				IMA=1XP, l	
!					IXP1 :
Isize, 121 words	20 words	First 20 of	First 20 words	20 words	
Numbers	per pkg.	for this	system]of each	for each	
and	lup to 18	pkg.This	control point	control point	package.
l	Loca-	pkgs.These	is at thelarea in CMR	area in CMR	
[tion	start at	end of			
lend of	CPUMTR				
]	CPUMTR				
:	codex I			;	
Symbol=-	CPUMTR	CPUMTR	CPUMTR	2008B	CPUMTR
lic jaddress	address	address	4008	address	
address	PXP	MXP	sxpP	.	sCX and
		I	.	I1xP	
	I I [[scx1 1xP1				
			In*x2008		

* The 21B words spaces the packages so that no bank conflicts
will arise when PPs access them.

60454300 A 3

54

In figure 3-23, assume the CPU is active with control point n and
monitor flag zero. If monitor flag is equal to 1, then the
exchange does not take place. PPn builds a CPUMTR exchange
package in its exchange package area.

Note

CPUMTR will exit to MTRX by executing an XJ BZ2.
MTR follows MTRX; therefore, after the

exchange (P)=MTR in the CPUMTR and exchange
package in the PPn exchange package area.

Figure 3-24 1is the same as the pool PP request except that
(P)Y=PMN and (X0) equals the request in the MTR exchange package
area.

In figure 3-25, control point n is running in the CPU (monitor
flag zero), the monitor address is the address of control point
n, and the control point address equaLs the exchange package
first word address.

Figure 3-26, is the system contro(point program mode.
Note

The system control point can be interrupted by
a PP program. In this case the PPn exchange

- package area contains the system control point
exchange package of which (P) equals the
address of -the next instruction to execute (not
PRG) .

Table 3-9 illustrates the relationships of the monitors, pool
PPs, and control points. .

60454300 A 3=55

TABLE 3-9. MONITOR, POOL PP, CONTROL POINT RELATIONSHIPS

I Type | i | |Reason |Location]| |
| of |Initiated]| |Request| for | of |Final |
|Exchange]| by |Action | to |Request |Request IDispositionl
| | I

R et e LT |
IControl |Control |Request |CPUMTR |Needs |RA+1 |CPUMTR/PP |
|Point |Point | | |help | | |
! [Program | | | | | {
System	Program	Request	CPUMTR	Needs	PX	CPUMTR/PP
Control	Mode		lactijon			
Point	CPUMTR			from		
}				CPUMTR		}
Pool PP	Pool PPs/	Request	CPUMTR	Needs	oR	CPUMTR/PP
land MTR	MTR			help or		
				inter-		
		I	Lock		I	
]				function]		
}		I [35-71.		:		
Pool PP	Pool PPs	Request	MTR	Needs	OR	MTR
and MTR			lhelp or]	
			linter-			
				Lock I		
				function]		
{		I [1-34.		{		
MTR {MTR	Special	CPUMTR	Needs	X0 in EP	CPUMTR	
		[Request		help		}

60454300 A

CPAN PPn EPA

EPA FWA
" CPUMTR CPUNTR
EP MF=0
(P)=PPR
(P)=MTR. (B2)=EPA FWA
s CPn
Same as above,| _ EP
no- change - MF=1 Addrs of
~ (P)= Next Inst.
s ’ b CPUMTR
ame as aoove, MF=0 EP
no change (P)=MTR

PP sets word zero of exchange package. (P)=PPR, (BO)#0
(B2)=EP address for the PP issuing MXN.

CPUMTR starts executing at PPR. 'When complete, it issues
XJ BZ2.

(P)=MTR since this location follows MTRX in CPUMTR. The
next time this PP calls CPUMTR, it will reset (P)=PPR.

Figure 3-23. Pool PP Request

60454300 A 3=-57

CPAnN

CPUMTR
EP
(P)=MTR

Same as above,
no change

Same as above,
no change

1. MTR sets up P, BO,
the MTR issues MXN.

2. CPUMTR starts

3. Same as pool PP.

60454300 A

B2.

executing

Figure 3-24.

MTR EP

MTR EP FWA CPUMTR
EP

MF=0 (P)=PMN

(X0)=request

(B2)=MTR EPA FWA

CPn

MF=1 EP

MF

The request

next instr.

Addrs of (P)=

CPUMTR

0 EP

(P)=MTR

is stored

at PMN and exits at MTRX.

PP MTR

in (X0) and

CPAR

CPUMTR
EP
(P)=MTR
(B2)=EP FWA

MF="

CPn EP
(P)=addr of
next instr. |
(MA)=EP FWA"

MF=1 CPUMTR

CPUMTR
EP
(P)=MTR
(B2)=EP FWA

" MF=0

Control point n places the request in RA+1, and will either
XJ(MA) (where MA is the hardware register in the CPU), or
wait for MTR to notice the request.

CPUMTR processes the RA+1 request and (unless recall is
requested) reactivates control point n by XJ B2. (Note:
(B2)=EP FWA)

CPUMTR exits at MTRX which sets (P)=MTR in control point n
control point area.

Figure 3=-25. Program Request

60454300 A 3-59

CPARN+1 CPn EP
CPn EP
SYS CP EP (P)=addr of
(P)=PRG next inst.
(MA)=SYS EP FWA (MA)=EP FWA
f for CPn
CPUMTR
EP = Same as above,
(P)= MTR MF=0 no change
(B2)=EP FWA
SYS CP EP
(P)=addr of
next instr. MF=1 Sarr::) acsh::o:e.
(PRG) g
(MA)=SYS EP FWA
CPn EP
EP FRA CPUMTR EP
- (P)=MTR
MF=0 (B2)=EP FWA
for CPn

1. CPUMTR will add
queue. It then
setting (P)=MTR

2. When the system
will XJ (MA) bac

this request to the system control point
exits to MTRX (which is an XJ), thereby
in the exchange package.

control point has exhausted its queue, it
k to CPUMTR.

3. System control point has finished and exchanges to CPUMTR.

4. CPUMTR will now

Figure

60454300 A

start the highest priority control point n.

3-26. System CP Program Mode

A probable sequence of system interaction is illustrated and
explained in figures 3-27 through 3-37.

In figure 3-27, assume CPUMTR is running in MM, and it decides to

activate control point ‘12; ‘that is, give the CPU to control point
12.

CP12 CPA

CP12
EP

CP12 CPA

CPUMTR
EP

MF=0

.

PTX. CPUMTR EP in CPU
"~ (MA)=2400

CPUMTR issues
XJ B2 (B2=2400)

ATX CP12 EP in CPU
CPUMTR EP in CP12 EPA

Figure 3-27. CPUMTR Running in MM Activates CP12

60454300 A

Figure 3-28 assumes that PP3 asks CPUMTR to perform a function.
PP3 must build a CPUMTR exchange package in exchange package area
PP3. Note that RA is 0, FL equals machine field length, and P
equals PPR, the FWA of CPUMTR PP function processor. PP3 issues
an MXN. Since MF is 0, this exchange will occur.

PP3 EPA 2400
CPUMTR CPUMTR
EP Ep

MF=0
2400
cP12 CPUMTR
EP EP
MF=1

PTX CP12 EP in CPU
PP3 issues MXN
ATX CPUMTR has CPU

Figure 3-28. PP3 Requesting Function from CPUMTR

60454300 A 3-62

In Figure 3-29, CPUMTR processes the PP request and then

determines from C

activated.

PTX

Copy to
CP12
EP

ATX

Figure 3-29.

Control point area 14 may exist from a previous
XJ by MIR or may have been built due to a
request by the scheduler or the advancement

routines. . Since control point 12 will not be

activated, it is necessary for CPUMTR to move
control point 12 from the PP3 exchange package
area to the control point 12 exchange package
area before issuing XJ=3000.

PP3

cP12
(MA)=CP12
CPA FWA
{2400)

PP3 EP.

CP12 EP
(MA)=2400

Restore
PP3 EP
(MA)=0

Restore
PP3 EP
(MA)=0

60454300 A

MF=1

2400

‘Copy PP3 EPA to CP12 EPA

—

MF=1

MF=1

MF=0

cP12

CPUMTR

CP12 EP

CP12 EP

CP12 EP

3000

3000

PU priorities ‘that control point 14 should be

cP14

CP14 EP

CP14

CP14 EP

CP14

CP14 EP

.

CPUMTR EP

CPUMTR Processing PP Request Activates Control

Point 14

In figure 3-30, MTR decides to switch control points (that is,
stop control point 14 and start control point 10) and issues an
ACSF (switch job request) to the CPUMTR. MTR must build a CPUMTR
exchange package in its exchange package area and issue MXN.

MTR EPA CP14 EP
3000 1 cpumTR
EP »
PTX cPLél;/ITR MF=0 CP14 running in CPU
3000
cP14 Same as above, :
ATX P ME=1 ho change CPUMTR in CPU

Figure 3-30. MTR Switches Control Points

60454300 A : 3-64

‘In figure 3-31 CPUMTR activates control point 10. MTR decides

which control point to start, and CPUMTR starts it.

PTX

ATX

MTR EPA

CP14 EP
(MA)=CP14
CPA
FWA=3000

Same as above,
no change

Restored
MTR EP
(MA)=0

Same as above,
no change

Figure

60454300 A

.CP10 CPA CP14 CPA
2000 cP10 3000 cpymTR
EP EP
MF=1
| 3000 cp1g.
ME=1 Same as above, EP
- no change
MF=1 Same as above, Same as above,
R no change no change
| 20001 cpumTr 3000
. EP Same as above,
MF—'-O’ no change
3-31. - CPUMTR Activates Control Point 10
3-65

In figure 3-32 control point 10 needs to call CIO., It places the
call in RA+1 and issues an XJ. Since the monitor flag is zero,
the exchange will store the CPU exchange package value in
Llocation (MA). Now, whenever CPUMTR builds the control point 10
exchange package, it sets (MA)=2000 and (P)=MTR, the FWA of
CPUMTR control point request processor.

CP10 CPA
2000
CPUMTR
EP
PTX MF=0 RA+1 |CIOP //A FET address
2000
CP10
\ EP
ATX f MF=1 RA+1 0

Figure 3-32. Control Point 10 Calls CIO

CPUMTR places control point 10 into autorecall, calls CIO to a
pool processor (for example, PP6), and searches for the highest
CPU priority job to activate which is control point 16 (figure
3-33).

* CP16 CPA
2000 3400
CP16
Same as above EP
PTX MF=1 ’
no change

CPUMTR XJ
B2=3400

CPUMTR
EP

ATX ME=0 Same as above,
no change

Figure 3-33. CPUMTR Calls CIO, Activates Control Point 16

w
i

60454300 A 66

CIO runs to completion,

.. PP6 EPA CP16 CPA
EW
PTX EPA FWA - CPUMTR 3400 CPUMTR
- Ep EP
(B2)=PP6 EPA
FWA
cP16 3400:$ame as above,
EP , no change
ATX ‘ MF=1 .
CPUMTR
.- EP
(B2)=PP6 MF=0 -
EPA FWA
Figure 3-34. CIO Runs to Completion and MXNs to
60454300 A

sets the status of

its operation to
complete, and prepares to drop.. .In order to, drop, CIO will MXN
to monitor with a DPPM (drop PP request).

Refer to figure 3-34.

CPUMTR takes CP10
out of auto-recall and

makes it a candidate
for the CPU.

CPUMTR XJ B2
{=addr of PP6 EPA)

interrupted CP16
continues.

Monitor

In figure 3-35 PP4 issues

MXN.

EPA FWA

PTX

ATX

60454300 A

PP4 EPA

CPUMTR
EP
(B2)=PP4 EPA

FWA

CP16
EP
(MA)=CP16
CPA
FWA (3400)

Figure 3-35.

MF=0

MF=1

a DTKM (drop track function) via an

CP16 CPA
3400 ™ cpumTR
EP
3400

Same as above,
no change

PP4 Issues DTKM Via MXN

Now PP4 idles on its OR until monitor satisfies its request.

DTKM is a request which takes too long a CPU time-slice;
therefore, it is processed by CPUMTR in program mode via the
system control point. The system control point is treated as any
other control point except that it has the highest priority.
,CPUMTR begins process1ng this request by queuing the request and
executing XJ B2=4000, thereby activat1ng the system control
point. If the system control point is interrupted, CPU/MTR
processes the interrupting request.

If it is a request which is also processed by the system control
point, CPUMTR queue, this request and reactivates the system
control point. In this way, all these types of requests are
handled in a first come, first served order.

Before the exchange can occur, however, CPUMTR must copy the

control point 16 exchange package from PP4 exchange package area
as shown in figure 3- 36.

PP4 EPA ' , - ‘ CP16 CPA System CPA

FTX crie CPUMTR 4000 sYs
cp : : co EP EP
{(MA)=CP16 MF=1 (P)=PRG
CPA FWA ’ '
(3400)

4000
3400 CP16
Same as above,| MF=1 ' EP ' | Same as above,
no change no change
3400 4000
R:;t:r;g ME=1 Same as above, ‘Same as above,
(MAY=0 no change no change
-
ATX 3400
Same as above, MF=0 Same as above, CP%':,"TR
no change no change (P)=MTR

Figure 3-36. System Control Point Processing

60454300 A | 3-69

When the system control point completes all the requests in its
queue, it will XJ (MA) to the CPUMTR.

For system control point (MAY=4000, CPUMTR sets (P)=MTR in the

CPUMTR exchange package at system control point area. When the
system control point exchanges, CPUMTR begins at MTR. However,
the system control point begins executing at PRG (figure 3-37).

CPUMTR
PTX 4000 {P)=MTR MF=0

SYS CPA

SYS
EP
ATX 4000 (P)=PRG MF=1

Figure 3-37. System Control Point XJ (MA) to CPUMTR

60454300 A 3-70

SUBCONTROL POINTS (SCP)

Subcontrol points are divisions of a central memory control
point. A user can set up a control point to contain two or more
programs; one of these is designated as the executive, and
monitors the other program(s) or subcontrol points. :

The executive controls its subcontrol points in much the same
manner that the system monitor controls the control points. When
a control point makes a system request or exceeds its time limit
or makes an error, control is given back to the system monitor.
Similarly, when a subcontrol point makes a system request or
exceeds its time Limit or makes a CPU error, control is given
back to the executive. The executive sets up each subcontrol
point so that, within the field length of the control point, each
subcontrol point has its own RA and field lLength and cannot go
outside its boundaries. The executive is thus protected from
access by the subcontrol points, whereas the executive's RA and
FLL define the full control point so the executive can watch over
and control all subcontrol points within the field length.

The subcontrol point concept depends on the executive program's
handling of the subcontrol points. This involves starting,
stopping, error processing, and other functions similar to those
of the system monitor.

Just as the system monitor keeps track:of each control point
through its exchange package, the executive can control the
subcontrol points through their exchange packages.

It is the responsibility of the executive to set up an exchange
package for each subcontrol point; each exchange package must
have the appropriate RA, FL, and so on, for the subcontrol point.
These exchange packages must be set up somewhere within the

" executive's field lLength, but probably not within the field
Length of the subcontrol point. To start execution of a
subcontrol point, the executive uses an XJP RA+1 request
indicating the address of the exchange package area of the
subcontrol point to be activated. When CPUMTR picks up the
request, it terminates the executive and activates the subcontrol
point described in the exchange package area indicated on the XJP
request. CPUMTR also sets a flag in the control point area
showing that at this control point a subcontrol point is now
éctiVe. Once activated a subcontrol point runs until:

1. It makes a CPU error
2. It exceeds its time -Limit

3. It makes an RA+1 request

60454300 A 3-71

Under any of these three conditions, control is given back to the
executive.

The executive can thus monitor error processing for the
subcontrol points. Errors can be noted and examined without
termination of the control point. Upon returning control to the
executive, certain information is set up in the X registers:

(X2) = msec before this subcontrol point began
(X&) = error flag (12 bits) and RA of this subcontrol point
(X7) = msec used by this subcontrol point

One of the parameters on the XJP request is the time for the
subcontrol point. When this time Llimit is passed, control goes
back to the executive.

When a subcontrol point makes an RA+1 request, control is
returned to the executive; the executive can then decide whether
to:

1. 1Ignore the request
2. Handle the request itself

3. Pass the request on to CPUMTR using RA+1 of the c¢ontrol
point (executive)

Subcontrol points can be set up by any CPU programmer using any
programming language; some features are only usable by COMPASS
programs. The structure of the executive is flexible within the
Limits we have discussed so far. As an example, consider the
transaction subsystem using subcontrol points.

TRANSACTION EXECUTIVE

The transaction executive is designed to let many different users
use one system; each user needs transaction processing. Users
can set up their own programs for transaction processing and all
transactions can be handled through the transaction executive.

The transaction executive uses subcontrol points so that it can
maintain complete control over each task to be performed. Within
jts field Length is needed a protected area for the executive;
the remaining field length can be used by up to 31 subcontrol
points. The tasks to be performed require different prqgrams
that do not need to be in memory simultaneously; rather than
using traditional overlays which have no protected area for the
executive, each task or transaction program can be set up as a
subcontrol point which can be activated as necessary by the
executive.

60454300 A ... 3=72

Transaction programs can be written in any programming language.
In order to make the programs more useful, the first 100 words of
each program should be allocated for communication between
subcontrol points; this can be done by using lLabeled common which
is always at the beginning of the field length, for example:

(FTN) COMMON /CCOMMON/ AC100)
(COMPASS) USE /CCOMMON/
Bss 100
(coBOL) COMMON STORAGE SECTION.
77 A OCCURS 100 TIMES.
: . NOTEVY :

RA+0 through RA+100 is normally not easily
avajlable to higher level languages, therefore
the technique of labeled common allows, an easy
method of access to RA+101 through RA+201.

The user programs should be compiled and then loaded to create a
(0,0) overlLay from each transaction program.

Each transaction to be processed must give enough information to
indicate the proper transaction program to be brought in for
processing. This information could include: :

1. User's name (code)
2. Type of .transaction
3. Data to be used in the transaction

The executive then brings in the appropriate transaction program
into its field length and sets up the program as a subcontrol
point. Since the user program is an absolute (0,0) overlay the
Loader cannot be used to load it*, so the executive has to use a
CIO function to bring in the program. The executive also has to
set up an exchange package for the subcontrol point and put any '
necessary information into the 100 word communication area in the
subcontrol point's field length. If the transaction requires
another program to complete the task, a request must be made to
the executive to bring in the other program. The executive
always checks to see if the program is available in memory
already and brings in a copy if necessary; then the executive
copies the appropriate data from the communications block of the
calling subcontrol point to the communications block of the
called subcontrol point.

* LDR always gives control directly to the (0,0) overlay after
Loading; this does not allow the executive to start the
subcontrol point.

60454300 A | 3-73

The transaction executive's job sets up the fjeld Llength in the I
most efficient way. The field Length must contain:

e The executive's code

e Tables

® Subcontrol points

e Exchange package areas for each subcontrol point

The field length could be set up as shown in figure 3-38.

RA

RASCP1-100 tables
wsaers-o0 (7777777777777 7720077077770 s
a0 0077 777
FLscps
Figure 3-38. Subcontrol Point Field Length
60454300 B 3-74

The area RA scp =100 through RA scp can be used for the exchange
package area for. the subcontrol point. The executive can fill in
this area as it reads in the program; it gets P from the 50 table
" of the (0,0) overlay binary, it can set up values for the
registers for COMPASS programs, it sets up RA and FL depending on
where the program was read into memory and how many words were
read in.

The executive always checks through its tables to see if the
program is already at a subcontrol point; if it is already at a
subcontrol point, the executive checks to see if it is a reusable
program if the program is not in memory or not reusable, the
executive will read in another copy of it. The executive Llooks
for the next available place inmemory to put the program and
brings it in using READR (READSKP) and updates its tables. The
executive must set up the exchange package area. When CPUMTR
picks up the request it exchanges in the subcontrol point and
sets the flag in the control point area to indicate that there is
a subcontrol point at the control point.

Transaction Subcontrol Points

Transaction subcontrol points are all (0,0) absolute overlays.
These programs are loaded by the executive using a CIO0 function.
The executive also sets up an exchange package for each
subcontrol point so that each subcontrol point can use only
memory within its own RA through RA+FL-1.

The transaction executive has set up one subcontrol point (ITASK)
which decides which other program needs to be brought in to
handle a transaction. ITASK can look at the transaction code from
the user and find the name of the program to do the task. Since
ITASK is a subcontrol point itself and cannot go outside its own
field Length, ITASK must ask the executive to activate the
appropriate transaction program at a subcontrol point.

When a subcontrol point needs assistance from the executive, it
puts a request in its own RA+1; this causes an exchange back to
the executive. The executive lLooks at the request and can:

1. Ignore the request

2. Process the request itself

3. Pass the request on to CPUMTR

After the request has been handled, the executive can give
control back to the subcontrol point if its is appropriate.

60454300 A : : 3-75

An example of a request would be a subcontrol point requiring the
Loading of another subcontrol point to complete a task. When the
first subcontrol point puts the request in its RA+1, the
executive is exchanged in; the executive brings in a copy of the
program if necessary and copies the communications block from the
calling program to the called program. The RA+1 of the subcontrol
point is within the FL of the executive who can read the request.

60454300 A 3-76

PERIPHERAL PROCESSOR RESIDENT (PPR) 4

PPR/SYSTEM INTERACTION

Each PP functions independently of the CPU and other PPs. . To
enable the PP to communicate with and work for the system, PPR
provides the necessary.links between the PPs and the CPs. PPR
serves as a PP idle program, the loader of PP programs, and a
source of commonly used subroutines for other programs and
routines. PPR is lLoaded into pool PPs :at deadstart time by STL
and is never changed. A dedicated PP program such as 1TD (the
multiplexer driver) overlays PPR and restores it via 1RP prior to
dropping back to pool PP status. MTR (PP monitor) and DSD
(display driver) are two other dedicated PP programs which do
not contain a copy of PPR.

Initially, PPs can be lLoaded only at deadstart time by
transferring data across their respective channels (refer to
section 26)., This method of loading PP routines during normal
system operation is unacceptable because other peripheral
equipment may be on the channels. The alternative is to have
each PP execute an idle Loop which checks the status of a word
in CM. This is accomplished through the PP communication area
in CMR. There is one entry for each available PP, and each
entry is 10B words in length (refer to section 2).

The first word of each entry is the input register (IR), the
second word is the output register (OR), and the remaining six
words are used as a message buffer. A sample entry is as
follows.

IR input register

OR output register

MB+0
° six—word N
« message —
° buffer

MB+5

The CM addresses for each PP input register, output register, and
message buffer are stored in direct cells named IA, 0OA, and MA

in each PP. These are 12-bit absolute CM addresses and,
therefore, the PP communication area must reside below address
100008B.

60454300 A , 4-1

Figure 4-1 jllustrates the interaction between CP monitor
(CPUMTR) and a pool PP to activate a PP program. CPUMTR checks
for an available PP and places the PP routine name (three
characters) and arguments (36 bits) in the pool PP input
register. The pool PP is cycling through an idle lLoop waiting
for its IR to become nonzero. When the IR is nonzero, PPR calls
subroutine PLL (peripheral library loader) to load the requested
routine. If the requested routine is not found, the SCOPE
function processor (SFP) is loaded. If the requested routine is
found, execution of that routine begins after calling the pause
routine (PRL). As the routine executes, it can communicate with
the system by monitor requests utilizing the FTN (process monitor
function) subroutine in PPR. FTN places the monitor request in
the PP OR. Monitor responds to the request and completes it by
setting byte 0 of OR equal to 0. When the PP routine terminates,
it informs monitor of this condition via a monitor function DPPM
and jumping to the idle loop in PPR.

60454300 A 4L=2

- PP
Communication
PP Resident) Area CP Monitor

PP no
1R xx%xX available
OR 0
ves

<j message
buffer

assign PP
‘ L:; to this
/ PLL ‘\ control
load peripheral point
library routine
XXX

load and
execute
requested
program

inform
monitor of

end of

operation

XXX monitor
{1 DPPM checks PP

E> output
| register

Q clear IR

0 <j and OR i
and indicate

PP is free

Figure 4-1.- System Interaction - PPR

60454300 A

Table 4-1 represents a pool PP memory map. The address to the
left is the first word address of the functional area. Direct
cells are memory Locations O through 77B. The mass storage
buffer is normally located at address BFMS for those routines
requiring mass storage I/0. The first executable instruction
begins at PPFW (1100B) with a one CM-word Llibrary table entry
preceding it at 1073B. Mass storage drivers are loaded at MSFW.

TABLE 4-1. POOL PP MEMORY MAP

- . . . - T S e W - N e S WA WY WD T M R WS D TR N AP Mm WS SR MM D S WD D D . . -

0000 - 0077 IDirect cells
|

0100 - 1100 |PP resident routines and mass
|storage driver area

	Idle Lloop	PPR
	Peripheral Llibrary Loader	PLL
	Load MS error processor	Lep
	Process monitor function	FTN
	Pause for relocation	PRL
	Reserve channel	RCH
IRelease channel	pcH	
	sSend dayfile message	DFM
	Execute routine	EXR
	sSet mass storage	sms
!		
IMass storage driver designator	MSD	

60454300 A | 44

TABLE 4-1. POOL PP MEMORY MAP (CONTINUED)

|
~ Routine/Function | Name |
|

1
]
]
1
L}
[}
1
i
]
|
1
]
i
1
)
1
]
1
[}
1
i
1
[}
1
[}
[}
1
]
|
1
[}
L}
[}
[}
1
1
[}

|
|
|
| |
| | | l
FWA of mass storage drivers	MSFwW
Read sector	RAS
Write sector	wos
l ' -	
End mass storage	EMS
operation	
' o	
[Library entry of current PP	
routine	-
First word of PP routin	PPFW
'	
Mass storage buffer (502B	BFMS
words)	I
MS error processor	EPFW
o	
[Last word of PP	7777

60454300 B

PPR SUBROUTINE DESCRIPTIONS

Whenever a pool PP is waiting to be assigned, it executes the
idle loop, PPR. This routine reads the input register in CM
every 128 microseconds (for both 1X and 2X modes). That is, if
byte 0 of IR is zero, the PP delays 128 microseconds before
reading IR again. If IR is nonzero, then the name of the
requested PP program is in IR, and that routine is Loaded and
executed.

In order to load a PP program or overlay, subroutine PLL is used.
This routine requests monitor to search the PLD for the requested
routine (monitor function SPLM). If the overlay is found, it is
loaded; if it is not found, overlay SFP is loaded. If SFP does
not recognize the PP overlay named in IR, the error message xxX
NOT IN PP LIBRARY is issued and the control point is aborted.

The PP then reenters the idle loop.

Subroutine LEP is used to load the mass storage error processing
overlays from CM.

Subroutine FTN is called to issue monitor requests. The
function is stored in the output register. If this is a CPUMTR
request, FTN executes a monitor exchange instruction (MXN). If
not a CPUMTR function, FTN waits for the completion of the
function. Completion is indicated by byte 0 of OR being set to
zero by monitor. FTN then returns control to :.the calling
routine.

If a PP is assigned and executing at a control point, that
control point cannot be moved by monitor. To enable a storage
move, the PP must pause by using subroutine PRL. If a move
takes place, CM addresses being used by the PP routine will have
to be adjusted because RA has changed. Do not use PRL with
nondedicated channels reserved.

Subroutines RCH and DCH dissue monitor functions RCHM and DCHM to
reserve and release a channel or pseudochannel.

When a PP issues a dayfile message, subroutine DFM is used. The
appropriate dayfile is selected and the message is passed in 40-
character blocks through the PP message buffers. Again, do not
use DFM with nondedicated channels reserved.

For a PP program to lLoad an overlay, subroutine EXR is used. Do
not use EXR with nondedicated channels reserved.

Subroutine SMS is called to load the proper mass storage
driver into PPR. SMS must be called prior to a request for
positioning or I/0 (P0OS, RDS, and WDS).

60454300 A 4=6

NOS PP NAMING CONVENTIONS

The following PP naming convention is used by NOS.

X X X
Oxx

1xx
2xx
3xx
4 xx

5xx

byy
Tyy

8xx

9xx

Three alphabetical characters, used for RA+1
callable overtays (for example, CIO).

Zero Level overlay, also known as location-free
routine (for example, 0AV).

Reserved
Reserved

Reserved

Reserved

Reserved

for
for
for
for

for

Mass storage
SMS in PPR,

system programs.

system programs.
system programs.
system programs.
diagnostic programs.

driver (for example, 6DI); callable by

MS error processor (for example, 7DI); called by LEP

in PPR.

Unused

Syntax and dispLay type overlays used by DSD, DIS,

" 1TD, and 1LS.

In the preceding Llist, x
yy is a mass storage driver mnemonic (DE, DI, or DP).

refers to any alphabetic character and

‘NOTE

User programs can call a PP routine only if its name
begins with an alphabetic character. Routine names
beginning with a numeral character are callable by the

system,
jobs.

60454300 A

other PP routines, subsystems, or special system

ERROR MESSAGES

ALL error messages from PPR are
dayfile messages are as follows.

Message

xxx NOT IN PP LIB.

xxx NOT IN PP LIB.
CALLED BY yyy.
SFP/xxx PARAMETER ERROR.

SFP/xxx ILLEGAL ORIGIN
CODE.

SFP CALL ERROR.

DIRECT CELLS

issued by the routine SFP. The

Description

PP package xxx was not found in

the PP library directory.

PP. overlay/program xxx was not
found in the PP Library directory
and was called by package yyy.

Parameter address outside FL.

Function iLLégaL for user's job
origin.

SFP 'not lLoaded by default.

Table 4-2 shows the direct Location assignments available for PP

routines. Cells ON, HN, TH,
changed by the PP routine.

remember that TO
IAM, and OAM

ALL

ROUTINE RESIDENCE

ALL PP routines reside
(RPL)

TR,

is used to hold the P register for the CRM,
instructions and, therefore,

in central memory or on mass storage,
by the peripheral Llibrary directory (PLD).

IA, OA, and MA must not be
others may be used. However,
CwM,
is subject to change.

in either the resident peripheral Llibrary

and are pointed to
System performance

can be affected by the residence of frequently used routines.

Further, the following routines
1MB, 1MC, 1DD, SFP, ODF, 7SE,
drivers and error processors.
in the RPL are contained in the
NOS.

10D AND 1RP

Two routines associated with PPR are 10D and 1RP.

is called by DFM when a dayfile
flushing to the disk. Routine 1
restore that PP's copy of PPR.

multiplexer driver) calls 1RP to restore PPR when TELEX
is done by passing a copy of PPR from another PP

dropped. This
through the message buffer.

60454300 B

7EP,
Other routines recommended to be

must reside in CM in the RPL:
and all the mass storage

default LIBDECK released with

Routine 10D
buffer is full and requires

RP is called by a PP routine to
For instance, 1TD (the

is

TABLE 4-2. DIRECT LOCVAT‘ION ASSIGNMENTS

| v |
I Symbol Name | Location (Octal) | Description |
'__,______________._____,_______,____-_________ I
| | | |
{ 70] 0 | Temporary storage |

| | |
| T1 | 1 | |
L | s
2	2 I	
‘		
T3	3	
	l	
I T4	4	
I TS I 5		
‘		
T6	, 6	
T7	- 7 l I	
cM	10	cM word buffer (five
		Llocations)
LA	15	Package load address
atteteldadete bl l oDt bt dedy e e e s e r e, - ———		
	set by PP resident before entry to program	
	=mmmmmmmmm e	
IR	50	Input register (five
		locations)
RA	55	Reference address/100]
-		
FL	56	Field Length/100
e it e e		
	Read-only constants	
	=== mmm = mm e oo	
ON	70	Constant 1
HN	71	Constant 1008
I TH	72 ‘ Constant 10008	
	'	
TR	73	Constant 3
	=ommmm e e e e s s e e s e —	
	set by PP resident before entry to program	
Rt el et kb		
cP -	74	Control point address
l '——- ————————— . W . - - . S D WR - SR W A WS S - 0 - - - e o - l		
	Read-only constants	
R el e bl ket L Lt R bl bt bl bt		
iA	75	Input register address
] 0A	76	Output register address
MA	77	Message buffer address

- TR WP A R P TG ED A G S D W M WD E D AN S W S G A G W G S M G G A W WS G0 D MD S S WD MR D WS e A W G R G S D SR S D SN SR GBS W e e e

60454300 A 4L=9

In figure 4-2, 17D is running in PP2 and needs to restore PPR
prior to dropping. Routine 1TD requests 1RP via RPPM. CPUMTR
assigns an available pool PP (say PP4) to execute 1RP. Next
CPUMTR informs PP2 which PP was assigned. Now that both PPs
acknowledge each other, PP4 can pass its copy of PPR to PP2.
This is done in six-word blocks using PP2's message buffer.
Completion is marked by a short (less than six words) transfer.

7SE

Routine 7SE is called by routine PLL in PPR when an error occurs
Loading a routine from mass storage. If the routine was on an
alternate system device, the Library entry is changed to point
to the routine on the system device. Routine 7SE then returns
to PLL to retry the load from a system device.

TEP

Routine 7EP is called after a DEPM monitor function to further
process the disk error. Routine 7EP issues the dayfile messages,
processes unrecovered errors and return and retry operations.
Routine 7EP is also called after recovered disk errors to issue

a message to the error Log indicating the recovery status.

IR 1TD 1RP RB ia
OR IA FE '
mB
six words
of
PPR
ppP2 PP4
IA Input register address for 1RP (bhyte 1).
ia Input register address for 1TD (byte 4).
FE Full/empty flag (1TD sets FE=0 to indicate empty

buffer and 1RP sets FE=1 to indicate full buffer).

RB Ready byte (byte 2). When 1RP is ready to transmit,
byte 2 of 1RP's IR is set to 7777B. 1RP then waits
for RB=0 before the next transmit. If this does not
take place within 1 second, 1RP exits, thus aborting
the load.

Figure 4-2. 1RP - Restore PPR

60454300 B 4-10

PP RESIDENT FLOWCHARTS

Figures 4-3 through 4-9 illustrate the PP resident routines.

control point
Entry 59 40 | 35 0
|

IR | program name] arguments

PPR
delay o
gram
128 P
micro seconds
read IR
address

and IR

program

set control
point '
address ..
in CP

*
enter 1

program

A

load
program
name

*1 LJM 5,LA
LA contains the program load address. The first 5
words of the program are loader information.

Figure 4-3. PP Resident (PPR)

60454300 B | 4-11

store
program
name

Entry (A)

= program name

(LA) = Load address for zero level overlay

reset input
register

set load

address

return
from
7SE

Figure 4-4.

60454300 B

load from
RPL into
PP memory
(CRM)
set equipment
track and sector
from output pause
register
perform
SETMS with (return)
READSYS
option

Peripheral Library Loader (PU)

no
yes
reset next
sector read sector
=O ’
process
error on set up
‘system ;
device for next
sector

pause

return

Figdre 4-4, Peripheral Library Loader (PU) (Continued)
60454300 B 4-13

Entry (A) =
(cPl)=

Exit
(A) =0

FTN

(r—

store
function
in CM

yes

no

read CMCL
from CMR

this
control point
moving

yes

set PRLM
in A

Figure 4-=5.

60454300 B

MTR function
(CM+1 through CM+4) =

(CM through CM+4) = OR

P

write CM
through CM+4
in OR

CEJ/MEJ
available

load
function

function

parameters
Control point number

<368

exchange
package
ready

Process Monitor Function (FTN)

store P, AQ,
BO in PP
exchange
package
no timed
out
- exchange yes
CPU
MXN d have CPUMTR
note exchange

request
CPUMTR J(
initiated
set
timer

decrement
timer

Note: (P), (AO0) and (BO) are from PXPP+1 in CPUMTR

Figure 4-5. Process Monitor Function (FTN) (Continued)

60454300 B ' 4=15

request

yes

reieV

no

Figure 4-5,

60454300 B

delay 128
seconds

\]/ .

read OR

read control
point RA+FL,
set IN direct
cells RA+FL

reread OR

\
‘ return ’

Process Monitor Function (FTN)

delay 1
millisecond

reset function

in CM
for retry

(Continued)

Entry (A) =1 or 2 channel numbers *2
(CM+2) = additional channel numbers
(if more than 2 needed)

Exit (CM+1) = assigned channel

o

store
channel -
numbers
in CM+1

/ FTN \ Reserve channel function
< RCHM

" return
Entry (A) = channel number @ xo
store
channel
number
NOTE (CM+1)

Storage move

may occur while /—L—\

this function ' FTN - Release channel

is pending. < > function
DCHM

‘ return ’

*1 RCHM will assign one of the channels requested if it can. (A)
and (CM+2) are used for optional channels.

*2 This entry point will not be supported in future versions of
NOS.

Figure 4-6. Reserve Channel (RCH)

60454300 B . ’ 4=17

Entry (A) = FWA of message (0-11)
message code (12-17)

store message
address/code

(==

place message
in message

buffer (up to

40 characters)

save cells 2-110B |
MS driver, MS
error processor,

& program

@

- =7 to dump

store
message code,
in CM+1

(-

*1 Dayfile message function

call 1DD

dayfile

Figure 4-7. Send Dayfile Message (DFM)

60454300 B

4-18

Figure 4-7.

60454300 B

FTN

day-
file dump
required

PAUSE

pause for
relocation

end
of
message

yes

Send Dayfile Message (DFM) (Continued)

4=-19

60454300 A

Entry (A) =

Routine name

(LA) = Load address for Llocation-
free routines
Exit Exit to called routine via simulated

return jump from caller

Example: Call overlay 2XY

PLL

load
routine

set return

address
from caller
-»(LA) + 6

Figure 4-8.

(A) = 2XY
(LA) = lLoad address
RJM EXR

then core from (LA) to (LA) + 7 is

(LA) + 0 2X

Y-

load address

0

length

0100 LIM

return address from

caller of EXR

7 lst executable state-
ment address

Ve WN

program 2XY at completion does a
RETURN, which is a LJM (LA) + 5,
which will LIM (return address
from caller).

Execute Routine (EXR)

Entry (T5) =
Exit (CM+1)
Driver
Driver

Est ordinal (refer to section 2 for description

of EST_entry)

The address of the initialize routines for all
drivers begins at MSFW. These routines set the
appropriate preset information for that
equipment.

through (CM+4) = EST entry bytes 1 to 4
loaded if necessary
initialized '

read EST, , load
MST word o v proper
MDGL - driver

3

/ FIN \

, s
" praper

driver SPLM
in
Y
jump to - set device
driver N type in
preset MSD

*1 ESTS = FWA of

EST

*2 SMS has stored the driver name in MSD when that driver was
loaded, so that it can compare new driver requirement against
the loaded driver.

Figure 4-9. Set Mass Storage (SMS)

60454300 B

4-21

DAYFILE MESSAGE OPTIONS

A normal dayfile message is sent to the master dayfile, control
point dayfile, and control point message area. The job name is
defined in the control point area. Following are the dayfile
message options.

Option Description
(00000 Normal message

NMSN (10000) Normal message with no message at control
point

JNMN (20000) Message to master dayfile only, with job
name

CPON (30000) Message to control point dayfile only

ACFN (40000 Message to account dayfile only

AJNN (500000 Message to account dayfile with job name

ERLN (60000) Message to error Log only

EJNN (70000) Message to errbr Loé only with job name

FLIN (400000) Flush and interlock dayfile

The FLIN option flushes the dayfile buffer and leaves the
dayfile pointers interlocked. It is used in conjunction with
any of the preceding dayfile options. If the message is issued
to more than one dayfile, each is flushed and left interlocked.
FLIN is used by SFM to terminate an active account, error log,
or system dayfile.

MASS STORAGE DRIVER RESIDENT AREA

Mass storage drivers are overlays loaded by PP resident in an
area between PP resident and the first word address of PP
programs. Mass storage drivers are coded such that the entry
points remain constant between all drivers.

Parameters passed to the driver are:

(T4) = channel

(T5) = equipment number
(T6) = track :
(T7) = sector

60454300 A . 4=22

The rules are:

Name is the character 6 followed by the equipment
mnemonic. :

Origin is MSFW.

First word is the address of the driver initialization
routine. This entry 1is used by SMS to cause
initialization of the driver. . Exit from initialization
is to SMSX. SMS enters the initialization routine with
CM to CM+4 = EST parameters, SLM-4 to SLM = MDGL word

~of MST.

The entries for read, write, and position originated
at the appropriate symbolic names (RDS, WDS, EMS).
These entries are entered via return jump.

The driver must not use any direct locations except
T1, T2, CM to CM+4.

The driver and its associated error processor must

reside in RPL.

ALL drivers use the following three entry points.

RDS Read sector
Entry driver initialized (SMS called)
(T4) = channel (if driver previously
called)
(TS) = equipment
(Té6) = track
(T7) = sector
(A) = FWA of data buffer (502 word buffer
needed)
Exit (A) = -0, if unrecoverable error
60454300 B 4-23

WDS Write sector

Entry driver initialized (SMS called)

Exit (A)

A

EMS End mass

Entfy

ALl drivers begin at

(T4) = channel (if driver previously
called)

(T5) = equipment

(T6) = track

(T7) = sector

(A) = FWA of data buffer (502 word
buffer needed) + WCSF for WLSF

(WDSE) = Write error processing buffer

address (502 word buffer)

-0, if unrecoverable error

-1, if recovered error on previous sector;
current sector data and linkage bytes
must be regenerated and reissued

storage operation

(T4) = channel, if RDS/WDS previously
called
(TS) = equipment

location MSFW.

Use of mass storage drivers is described in detail in section 7.
Refer to table 4-3 for a list of symbols used with mass storage

drivers.

60454300 B

4-24

TABLE 4-3.

Symbol | Value
|
| |
| MSD |
| |
| |
} MSFW |
|
| RDS | MSFW+1
| |
| woSs | MSFW+4
| |
| EMS | MSFW+7
| |
| | e e e
| | Other mass st
| BFMS | g
| | i
| FSMS l
|
| |----- 4
| | System sector
| |
| FNSS | BFMS+2
| |
| EQSS | BFMS+2+5
| |
| FTSS | BFMS+2+6
| |
| FASS | BFMS+2+11
| |
| DTSS | BFMS+2+12
| [

Whenever a PP program desires
the program always executes a
option selected. A flowchart
4-9,

60454300 B

to rea
SETMS
of SMS

SYMBOLS USED WITH MASS STORAGE DRIVERS

Mass storage driver
identification

FWA of mass. storage drivers
Read sector
Write sector

End mass storage

- o om o - am

FNT entry (five bytes)
Equipment number

First track

Address of FST entry

Packed time/date

d or write mass storage,
macro with the appropriate
is illustrated in figure

4-25

JOB PROCESSING 5

[EUPI O ————————— e e R e R R R R R R R R R R R R R R R R R R R K R R R

ALL jobs which flow through the system are processed from start
to finish by PP routines 1SJ, 1AJ, 1CJ, 1RO, 1RI, and (in the
case of time-sharing origin jobs) 1TA. Flow is controlled by
the queue priorities and CPU priorities, in association with
time and equipment Llimits. Depending on the resources needed by
the job, all action is initiated, controlled, and eventually
error- or end-processed by these routines.

ALL jobs are one of the following origin types.

Origin .

Type Value , : Description

SYOT 0 System origin includes all jobs

‘ entered by the operator at the system
console, such as DIS, FST, MY1, and
SO on.

BCOT 1 Local batch origin jobs are entered
from all Local batch devices.

EIOT 2 Remote batch origin jobs are entered
from the remote Low speed batch
“terminals.

TXOT k 3 ALL jobs entered via the IAF
executive (IAFEX) or time-sharing
executive (TELEX) are TXOT origin
types. :

MTOT 4 Multi~-terminal origin includes jobs

which do one specific task for many
terminals while only being scheduled
into the system once.

Figure 5-1 illustrates the general system flow for jobs.

GENERAL JOB PROCESSING

The priorities are controlled dynamically at the operators
console and updated by routine 1SP. The job control (JCB) area
in CMR contains the current values of these priorities for the
system. Each job can be further restricted by the VALIDUs file,
PROFILa file, or job statement parameters, but no job can be
Less restricted than the JCB. Routine 1SP also updates queue
priorities in the input and rollout queues, checks central
memory time slices, periodically calls 1CK to checkpoint all
mass storage devices and CMS to initialize or recover mass
storage devices online, issues dayfile messages for mass storage
drivers that are unable to do so, and calls OAU to process the
accounting accumulator.

60454300 A . 5-1

INPUT QUEUE
list of jobs to be processed

CARD

READER " >N
JOB CONTROL POINT
DECK

15
\

_ _
yass - —&)
STORAGE

DEVICE
- -+ e -
_____,,/
LISTABLE ¥
OUTPUT
LINE / /
PRINTER [« -
OUTPUT QUEUE
list of jobs to be disposed
Figure 5-1. General System Flow

60454300 A 5-2

Jobs enter the system at the initial (original) queue priority
for their origin type (figure 5-2). As they wait in the input
queue, they are aged. The queue priority is increased until it
reaches the upper bound priority, at which point the priority
cannot be raised, At any time, the scheduler, 1SJ, may determine
that this job is the best candidate (best job) for a control
point by an algorithm that takes into account queue priority and
resources desired (FL, etc.). It then attempts to schedule or
assign it to a control point.

scot\ <1
ETIOT

AN

. JOBNAME - INFT
—— ; — Input queue entry

-

*1 TXOT/MTOT are started by IAFEX or TELEX and SYOT is initiated
by DSD.

Figure 5-2. Read Card Reader

The job selection proceeds in the following order.

1. The highest priority job that will fit in unassigned or
rolling memory with the service constraints FL/FLE
(individual job field Length) and AM (maximum amount of
memory available) for the candidate's origin type.

2. If candidates of equal priority are found, the job
selected is the one residing on the mass storage device
Wwith the least amount of activity. The amount of disk
activity includes no free channel, channel being
requested, and first unit reserved.

60454300 A 5-3

3. If the mass storage activity is also equal, the job with
the largest field lLength is selected.

4. If no job is selected, but one was rejected due to
service constraints, it may be scheduled if no jobs have
to be rolled out. 1If this is done, its priority is set
to the lower bound priority (LP). This prevents
resources from being idle during periods of low
activity.

When 1SJ assigns the best .job to a control point, it gets the
required FL, rolling out other jobs if necessary. It selects a
control point according to the following criteria.

1. Exact fit
2. Smallest hole that is larger than needed
3. Largest hole if none is big enough

I1f no control points are available or are not in the process of
rolling out, the first control point encountered with a Llower
priority than the candidate is selected to be rolled out. If
all control points have higher priority than the candidate or
control points are not available or are rolling out, no control
point is selected.

Once a control point has been identified, its queue priority is
set to the upper bound priority (UP) of the job's origin type
and its CPU and CM time slices are initialized.

If the job is being scheduled from the input queue, 1AJ is

called to begin the job; if the job is being scheduled from the
rollout queue, 1RI is called to roll in the job (figure 5-3).

60454300 A 5-4

'JOBNAME
Input queue

INFT (O

CPA

INPUT

C
INFT ng

JOBNAME JNMW

P

FL area
of CM

Figure 5-3. 1SJ Prepares a CP for the Job

The job advancement routine, 1AJ, knows it has been called by
the scheduler and will call overlay 3AA (figure 5-4) to start
this job up. The job can at any time create local files, and
if the name is OUTPUT, PUNCH, PUNCHB, or P8 it is treated

special at job completion time (figure 5‘-5).

60454300 A

CPA FL

c
» INPUT | INFT[SR
CPA
Reads first contro
statement, loads
first routine,
starts job
Figure 5-4. 1AJ Starts the Job
OPTIONAL
CPA FL INPUT INFT| R
@ PRFT or
PHFT
OUTPUT vojcee

Figure 5-5. Job Creates Local File

As the job progresses, CPUMTR and MTR periodically check all the
jobs running at control points and call 1AJ if no activity is
detected (W, X, and I status zero). If the error flag is set,
1AJ processes the error. If the error is nonfatal, 1AJ advances
to the next control statement. If the error is fatal but an EXIT
statement exists, 1AJ advances to the statement following EXIT,
CPUMTR and MTR also monitor the CPU time slice, and if the job
exceeds its time slice, its queue priority is dropped to the
lowest queue priority (lp) of that origin type. This does not
mean that the job loses its control point. If 1SJ finds a best

60454300 A ' 5-6

job in the input or rollout queues, then low priority jobs are
candidates for rollout., Also, 1SP monitors all the contol
points, and if it detects that the CPU time slice is exceeded
before either monitor does, it Lowers the queue priority to LP.
An interlock is provided in bit 35 (CPU time slice active bit)
of TSCW in the control point area so its queue priority is only
dropped once.

Routine 1RO may be called by 1AJ, 1SJ, DIS, and other routines
(figure 5-6). It dumps the job according to the rollout file
format, sets W, X, and I status to zero, requests the control
point be made available, and releases all FL, nonallocatable
equipment (tapes are not released, but the control point number
in the EST is set to 37B), and all files assigned to this
control point. The job is then placed into the rollout queue
with whatever queue priority the job had when rollout was
initiated. If 1RO is catled as part of special entry point
processing by 1AJ, the rollout file is called DM* and left as-
signed to this control point. ~Then 1RO releases everything else
except the input and control statement file, and calls 1AJ to
advance the job. In this way FNT space is not wasted while a
job is rolled out.

Routine 1RI reads the rollout file and reestablishes all the
files, equipment, and so on, to allow the job to continue
(figure 5-7). It sets W, X, and I status to its former values.
The control point is now a candidate for the CPU. A job always
gets a fresh time slice when it is rolled in. :

When 1AJ detects an end-of-job card stream, a fatal error with
no recovery, an illegal control statement, or some other fatal
condition, it calls 1CJ to complete the job. If any of the job
flow routines ever detect an origin type which is not defined
(type not SYOT, BCOT, EIOT, TXOT, or MTOT), it calls 1CJ
immediately to end the job. This is protective coding.

Routine 1CJ locates the lLocal file QUTPUT assigned to this job,
if it exists (figure 5-8). It then appends the job dayfile to
the end, writes an EQI, and moves the file to the output queue
by setting the control point field to zero and setting the queue
priority to the output queue entry priority (OP) for the origin
type. ‘ : :

60454300 A 5-7

CPA FL

1AJ

NPUT INFT |CP
Release FL ! no. %0
and CPA y N\
iRO
optional
OUTPUT LOFT%g
> T
JOBNAME RCFT] O
*2

*1 And any other Llocal files
*2 This is the same FNT entry

Figure 5-6. Job Is Rolled Out

60454300 A

1SJ JOBNAME ROFT | O
7. *3
1RI
INPUT INFT {SP
%o 1%3
CPA FL
<«
OUTPUT LOFT {58
A %,

*1 And any other Llocal files

*2 Not necessarily same control point area and field length as
figure 5-6

*3 This is the same FNT/FST entry

Figure 5-7. Job Is Rolled In (From Rollout)

60454300 A 5-9

CPA FL

JACM
| INPUT INFT |8
s ‘ A
- v
1AJ Release input file
OUTPUT LOFT %i
Release
CPA and FL
1CJ

JOBNAME

*1 Same FNT/FST entry as local OUTPUT file.

Change OUTPUT file name to JOBNAME and file type from LOFT to
PRFT. Append dayfile onto end of OUTPUT file.

1CJ also returns all files associated with this job except
OQUTPUT type files.

Figure 5-8. Job Completes

60454300 A 5-10

JOB FLOW

Th1s sect1on prov1des an overv1ew of priority aging, rollout,
scheduling, queues, and controL statements. The details for the
routines that do the actual processing (1AJ, 1RI, 1RO, 1SJ, 1SP,
-1CJ) are presented in another section.

PRIORITY AGING

A job of a part1cuLar JOb or1g1n type waiting in the input,
rollout, or output queue is aged if its current priority falls
between the lower priority and the upper priority Llimits.

A job is aged by the scheduler in conjunction with the job
~control area parameters in CMR. The job control area word
is illustrated in section 2. '

For each cycle of the priority increment routine (1SP), the
counter (byte 4 of JCB) is incremented by one. This continues
until the counter is greater than or equal to the age increment
(byte 3 of JCB). At that time, the job queue priority is aged in
the. FST entry by one. Refer to the NOS Installation Handbook

for the IPRDECK entries used to establish the JCB values for

each job origin type, and the NOS Operator s Guide for the DSD
commands to dynam1caLLy aLter them.

QUEUES

The queues (input, output, rollout, for example) are FNT/FST
entries in the FNT/FST table area of CMR. When a routine checks
a queue, it searches the FNTs for entries with the appropriate
file type which are not assigned to a control point.

When a job is moved from the input or rollout queues to a
control point, the file name field of the FNT word contains
INPUT instead of JOBNAME. The control point assignment field is
set to the control point number and the queue priority is set
accordingly (input or rollout UP).

When a job is sent to the rollout queue, the FNT name contains
JOBNAME instead of INPUT. The file type is set to rollout
(ROFT), the control point assignment field is set to zero, and
the queue priority is set to whatever the control point area held
at rollout time.

When a job completes, the special FNT name OUTPUT, if one exists,
is changed to JOBNAME. The file type is changed from Llocal
(LOFT) to output (PRFT), the control point assignment field is
set to zero, and the queue priority is set accordingly (output
OP). This is also done for special files named PUNCH, PUNCHB,

or P8 with the exception that their file type is changed to

punch (PHFT).

60454300 A 5-11

ROLLOUT SCHEDULING

When a job is scheduled for roltlout, the rollout-request flag,
bit 24 in word JCIW of the control point area, is set and 1RO
may or may not be called. When 1R0 is called (by ROCM) it sets
the rollout-in-progress flag, bit 27 in JCIW. When 1RO has
rolled the job out, it resets these bits to zero. Also, if 1RO
was called by a special entry point routine, 1RO sets these
flags to zero. A special entry point job can also be scheduled
to be rolled out. In this case, when 1RO is called it is a
regular rollout, not a response to a special entry point job.
Many copies of 1RO and 1RI can be run simultaneously.

SCHEDULER

Only one copy of 1SJ may run at any one time, and it can only be
called by the monitor function RSJM. RSJM checks the scheduler
active flag in JSCL+1 (bit 59) and if the bit is set, the
scheduler is already active. 1If the bit is not set, monitor
places a call to 1SJ in the next available PPU.

Any time the status of the system changes, 1SJ should assess the
status and modify system flow as needed. The scheduler selects
candidates as described earlier. It continues to select
candidates until mass storage activity reaches a given Limit or
until no more candidates are found. 1In a normal job mixture,
all jobs are eventually scheduled and any minor delay in the
scheduling of one particular job is inconsequential to the total
throughput of the system.

Figure 5-9 jillustrates a typical queue priority scheme.

60454300 A _ 5-12

vV 00g%5%09

eL-S

*6-6 8J4nbL4

awaysg A3LJoLdd ananp jedtdAy

. 6000 -

5000 -

2000 -

Queue
Priority

7000 +

4000 A

3000 {

1000 A

SYOT

UP 1

0P

Input Queue

BCOT EIOT TXOT MTOT

UPA

OP-

LP-

upP
UP 1
oP
LP
UPW OP -
LP-
OP -
LP-

Rollout Queue

SYOT BCOT
uPq -
UP
o
oP4{ LP-
LP

© OP+

EIOT TXOT MIOT

UPT

LP

UP 1

0P+

UP'1

OP

- LPA

SYOT BCOT
UP 5
L UP-
OP-
oPA
LPd P

Output Queue
EIOT TXOT MTOT

UPT

oPA

LP

UP

oP-

LP-

UP 1

0P

LP-

0000

CONTROL STATEMENTS

An overlay in 1AJ called TCS can be called directly from a CPU
routine or by 1TAJ. TCS (translate control statement) cracks a
control statement and tests it for validity. Each control
statement is a call to the system to lLoad a routine whose entry
point is the statement name (such as MODIFY and COPYBR). TCS
disassembles the arguments, if any, on the control statement and
makes them available to the routine. Then a search is made to
Locate the routine. First, the FNTs locally assigned to this
control point are scanned, then the central library directory
(CLD), and then the resident central Library (RCL). If the
routine is found in any of these, the first occurrence of the
routine is loaded, the arguments are sent to it, and it begins
executing. Thus, a programmer can define a program-'or routine
local to his control point which may exist in the system already.
If the control statement is preceded by a dollar sign ($MODIFY or
$COPYBF, for example), the Local FNT scan is bypassed.

If the entry point name is not found, the peripheral Llibrary
directory (PLD) is scanned. If found, the routine is lLoaded into
a PP (set IR equal to the routine name and argument) and TCS
terminates.

If no match is found, an appropriate error message is issued to
the dayfile and error procedures are initiated by setting the
error flags and returning to 1AJ.

Before a CPU program is given control, TCS places the control
statement image which called this overlay into central memory
Locations RA+70 through RA+77. Also, the control statement
which was cracked by TCS and parameters are placed in locations
RA+2 through RA+62 terminated by a zero word. If the control
statement is preceded by a slash, the parameters are cracked in
operating system format; otherwise they are cracked in product
set format. ALL compiler (FTN and COBOL, for example) binaries
expect control statements to be cracked in product set format.

e Operating system format (6-bit ID code):
59 17 5 0

parameter (7 characters) 0 id

id 0 for all separators except = and /, and
in those cases the character is placed in
the 6 bits.

@ Product set format (4-bit ID code):
59 17 30

parameter (7 characters) 0 id

parameter String of characters up to the
separator

60454300 A 5-14

id Separator equivalence:

iﬁ Separator’
0 Continuation (for Lliterals)
1
2 . =
3 /
4 (
5 +
6 -
7 Space
10 F
17

- Termination) or .
For example, the control statement
" MODIFY(I,P=0,N=FILE,A,NR,X,CL)

would be passed as follows: PGNR = RA + 64B = MODIFY 118B

Operating System Product Set
42 12 6 42 14 4
vz 11 U T T T T e

3 !PIOI! EPlolzi
4 } 0 I 0| | | 0 I 0o |1 }
5 | N | o = ! { N I ol 2 |
6 i‘E}EE"""'"T'B"T""E e T e
7 | A | o | I { A | o 11 }
N R B v R PR
o 1T T
R T
11 | ainary zeres | Totnary zeres |

6-bit code is display 4~bit code is binary

character when used number.

and binary zeros when

blank. One word of zeros preceded

by other than a code 17
‘ implies another control
Full word of zeros statement.
terminates control
statement.

60454300 A 5-15

The flow chart in figure 5-10 shows the flow of control statement
processing. Routine 1AJ processes CTIME, RTIME, and STIME
directly.

Local absolute files with multiple entry points cannot be loaded.
However, local relocatable files with multiple entry points can
be loaded.

The type of automatic parameter cracking depends upon whether
the load is from a system or local file. If a system load, the
defauit is operating system format unless *SC is specified in
LIBDPECK. If a local load, default is product set format unless
a slash (/) precedes the control statement.

60454300 B 5-16

©

read
control
statement

{

control statement
processor
searches

for special control
statement name

l

process
special
request

yes

present
before control
statement
name

®

use operating

/

present system format
hefore control for processing
statement

parameters

name

_search FNT
for file
assigned to
this job

Figure 5-10. Control Statement Processing

60454300 B

®

Figure

60454300 A

found

(i

\

-t N0

5-10.

\

yes

search CPU
library for
control statement
name

Y

yes

search PP
library for
name, if name
is legal PP
program name

no

yes

declare
control
statement
illegal

®<_

process field
length control

Y

load program
to central
memory

\

store control
statement and
control statement
arguments in user's
job communication
area

\J

execute
program

place name

with up to two
octal arguments
as a PP request

y
exit to
program

(no FL change)

Control Statement Processing (Continued)

5-18

SPECIAL FILE INPUTx*

When the user returns the file INPUT, file INPUT* is set up to
point to the input file, but the user cannot access it.

When a procedure file call 1is ehcodntered, the procedure file is
expanded on file INPUT*. i

When a procedure file from the system is encountered, a dummy
call is generated to the CPU routine CONTROL or BEGIN (if a CCL
procedure) and the expanded file is pointed to by INPUTx*.

When any combination of the preceding occurs, INPUT* is used to
Link up the several files.

NOTE

The file INPUT* may not explicitly exist for
precedure file calls. Thus there is no FNT/FST
entry, but INPUT* is pointed to by CSPW in the
control point area (bit 59 in word CSSW).

TIMED/EVENT ROLLOUT PROCESSING.

When a CPU program goes into timed/event rollout, it uses the
ROLLOUT macro and specifies an event and/or a time. <Routine 1RO
is called to roll the job out and create an FNT/FST with file
type TEFT (refer to section 2).

When 1SP is called by 1SJ it checks each entry in the TEFT queue
and if the rollout time period has expired it changes the entry
to a regular ROFT entry. If the time period has not expired,

1SP uses the EATM monitor function to read the event table from
MTR's field Length. It compares the events with this 18-bit
event descriptor and if there is a match 1SP changes the entry
to a regular ROFT entry (refer to section 2).

60454300 A 5-19

EESET Macro

Only PP programs may access the event table via the EATM MTR
request. Therefore, the macro EESET allows a previously set
event to be matched by an event set by a CPU program. The
format of the EESET macro is as follows.

LOCATION OPERATION VARIABLE SUBFIELDS
EESET event
event 18-bit event descriptor

The event is an 18-bit value that has the following format.

17 1 0

eq condition

eq EST ordinal of equipment on which the
system is waiting for condition to occur.

condition Variable event condition.

EESET calls CPM to enter an event descriptor into the event
table. A job must have SYOT origin to use the EESET macro.

The only PP routines currently using the EATM function are the
following. :
e CPM for EESET enter event.

e IMS and MSM to specify when a removable pack has been'.
initialized or recovered (for missing pack name event).

o ORP to specify when a write mode permanent file is no
longer busy and to specify when a removable pack has been
returned and has no more users (for overcommitment event).

o OFA to specify when a write mode fast attach file is not
busy.

e 1DS to specify when the operator has supplied a VSN.
e 1MT to specify when a VSN has been mounted (for missing

VSN event) or when a tape unit has been returned (for
overcommitment event).

60454300 A 5-20"

DSD and DIS Commands =

In all DSD file displays the timed/event rollout files are
displayed as TEFT file types. 1In addition, the @ display has
all TEFT rollout files flagged by **.

The DSD command, ROLLIN,xx. may be used to roll in a TEFT job.

For a job at control point n, the DSD command n.ROLLOUT ,xxxx.
will roll the job out for XX XX seconds.

~The following command to roll a job out for a time period may
also be used under DIS.

ROLLOUT /xxxx.

Description of Timed/Event Rollout

‘The timed/event rollout feature allows jobs to access system
resources as they become available. Through use of the ROLLOUT
macro, the user may request to be rolled out until an event
occurs or time period expires. If the desired event does not
occur within the specified time period, the job is scheduled to
roll in for further processing anyway.

To determine when a specified event has occurred, a system event
table is maintained in MTR's memory. System programs can make
entries to this table to indicate occurrence of events. Routine
1SP compares the requested event with the system events recorded
in this table to determine if any matches have occurred. If a
match occurs, 1SP initiates roll in. If no one is waiting for
the system events they are cleared from the table.

ROLLOUT Macro

The format of the ROLLOUT macro is as follows.

LOCATION QPERATION VARIABLE SUBFIELDS
ROLLOUT |addr '

addr Optional address containing
further parameters

60454300 A 5-21

If addr is not specified, the job rolls out until the operator
initiates rollin. If addr is specified, the job is rolled out
for the specified time and event description. The format of
addr is as follows.

59 29 11 0

cddr 0 evd rtp

rtp Rollout time period in job scheduler
delay intervals (0<rtp<7777B). I1f rtp =
0 the job rolls out for a time determined
by the system to insure that the job
will rotl in if the event for which it is
waiting for is lost or never occurs. ‘

evd Event descriptor

If evd is nonzero, the event descriptor and rollout time period,
rtp, are placed in the control point area (TERW). When the job
rolls out it waits for the occurrence of the event in evd or.
the specified time period (rtp) to elapse before becoming
eligible for roll in. :

If evd is 0, the event is taken from the control point area if
bit 30 in TERW is set to indicate a valid event descriptor and
only the rollout time period is taken from addr. This option

allows the user to roll out waiting for events that the system
specifies.

If evd equals 7700xxB, then extended timed rollout is made.
(Assume the job scheduler delay is 1 second.) Since the maximum
time rtp can specify is approximately 1 hour and 8 minutes, the
extended time rollout allows the user to roll out for any Llength
of time. This is a strict time rollout with no event dependency.
The job rolls out for (4096*xx+rtp) seconds.

The ROLLOUT macro calls CPM to read the rollout time and event
from the users field lLength and store it into control point area
address TERW. CPM then does a ROCM and control is returned to
the user. The user then can execute until the rollout bit is
detected by MTR who initiates 1AJ, who calls 1R0. In order to
insure the rollout, the user must issue a PP request, since
CPUMTR will not honor a PP request for a control point scheduled
for rollout. CPUMTR places the control point in I autorollout
status with an outstanding RA+1 request. The simplest method is
to build a dummy FET and issue the RETURN macro. This issues an
RA+1 request to CIO.

MTR detects that this control point is in I status and is
scheduled for rollout and calls 1AJ, who calls 1RO.

Routine 1RO rolls the job out and then checks control point area
address TERW. If it is zero, this is a regular rollout. If it
is nonzero, then 1RO builds a TEFT type FNT and places the event
and time Limit from UPCW into the FST. Routine 1RO then clears
TERW. '

60454300 B 5-22

When the job rolls in, MTR finds the control point in I status,
and an RA+1 request. MTR calls CPUMTR with a zero request and
CPUMTR then honors the RA+1 request. In the case of the RETURN
dummy, CIO treats it as a null operation (file does not

exist) and terminates. Then the control point can continue.

Example 1

An attempted attach results in file busy status.

Assume error processing is set. Upon restarting the job, use of
the ROLLOUT macro with evd equals 0 roltls the job out for the
time specified by rtp, waiting for the event (file ready to be
accessed) to occur. Routine ORP enters this event in the system
event table when the file becomes not busy. PFM stored the
descriptor for this event -in the control point area (TERW) when
it found the file busy but it did not set the rollout flag,
allowing the user to choose whether to rollout immediately, or to
process some other function first. :

1f error processing is not set the job is automatically rolled
out, waiting for the file to be ready to be accessed. When the
job rolls back in, the ATTACH request is retried.

The event for example 1 is as follows.

17 1 0

1st track

unit of file

When a user attempts to access files that are interlocked, the
system automatically sets the error flag and terminates the job
step until the file becomes available (unless the user is doing
his own error processing).

The user may bypass this automatic job step abort, by specifying
the NA option on the ATTACH control statement, so that the job
step is not aborted if the file is busy.

The user calling PFM via the macros provided, can avoid job step
abort by specifying error processing. If error processing is
specified, the system returns control to the user with error
status reflecting file busy. :

Examgle 2

Suppose that before JOB1 continues processing that it wants JOB2
(a system origin type job) to execute a certain function. Assume
JOB1 uses the rollout macro with evd = 1300 and rtp = 600. The
rollout flag will be set for JOB1 to rollout for 600 seconds or
until event 1300 takes place. Before the 600 seconds has
elapsed, suppose J0OB2 makes the macro call EESET 1300, entering
the event 1300 in the system event table. JOB1 will then be
scheduled for rollin to resume processing. If 600 seconds
elapse because event 1300 has not occurred (or the event was
cleared from the table before JOB1 rolled out), JOB1 will be
scheduled for rollin.

60454300 A 5-23

In any case, JOB1 does not know if it was rolled in because of
time or event occurrence. Hence, it is necessary for JOB2 to do
something; for example, write a code word on a permanent file
which JOB1 can check to see if the event occurred.

This job dependency can be accomplished by JOB2 attaching a
direct access file in write mode and then JOB1 doing the same.
JOB1 will wait as in example 1 for JOB2 to release the file.
However, if JOB1 gets the file first, it must release the file
for JOB2 and then attempt to attach it again. In order to use
EESET effectively, an installation must change CPM to accept
other origin types that issue EESET. This solution may cause
the filling of the event stack. So, a change to CPM warrants
careful consideration by the installation to limiting the number
of EESET requests per origin type.

Example 3

A user requests a magnetic tape with a specified volume serial
number (VSN) or a removable pack with a specified pack name.
RESEX, the resource executive which is called to allocate
magnetic tape and removable pack resources, will effect a
timed/event rollout if it does not find the specified tape or
pack mounted. The event used is the sum of the bytes in the VSN
or pack name, truncated to 12 bits. The equipment portion of
the event descriptor is 76B, which is equivalent to the
timed/event EST entry.

When 1MT reads the VSN from the tape or IMS and MSM initialize

or recover a removable pack, the matching event is entered into
the event table in MTR via the EATM function. Routine 1SP then
detects a match and has the job scheduled for rollin.

FNT INTERLOCKING AND SCHEDULING

A transition state is defined to be the state in which a job may
be in the process of rolling in or rolling out. The concept of
the individual FNT dinterlock provides better protection for jobs
and files that are in a transition state than was previously
provided by the technique of disabling job scheduling. The
following paragraphs describe the various FNT interlock
mechanisms, how they are used to protect jobs and files that are
in the transition state, and the impact they have on scheduling.

60454300 B ' 5-24

INDIVIDUAL FNT INTERLOCK

Interlocking an individual FNT entry is accomplished through the
monitor function SFIM (set FNT interlock). This function sets
or clears an intertbck bit for a particular FNT entry. The
interloc¢ck bit for each FNT entry is kept in the FNT interlock
table which is appended to the FNT. The interlock on an
individual FNT entry should be held for the shortest time
possible to avoid performance degradation.

This technique is usedvin the following circumstanceﬁ:
@ Bringing an input file into execution.
e Performing a job advance.
e Rolling in or rolling out a job.
e Terminating a job. |
e Altering the FNT or systém sectof of a queued file.
e Moving a file from one queue to another.
e Assigning a queue file to a cohtroL point.

The format of the SFIM monitor function is described in the NOS
Systems Programmer's Instant.

GLOBAL FNT INTERLOCK

The FNT may be globally interlocked by the reservation of the
FNT pseudo-channel (FNCT). The use of this mechanism is to
avoid conflicts which may occur when more than one system
routine attempts to update the FST entry of a queued file. The
global interlock is only used when the contents of queued file
FSTs are to be altered. This interlock should be used with
caution as the priority evaluation scheme is disabled by it.

In cases where the individual FNT dinterlock (SFIM) and global
interlock (FNCT) are both required, the SFIM interlock should be
obtained first and then the FNCT channel reserved. This order
must be maintained to avoid a. deadlock situation.

An example of where the FNCT interlock is used is the bSD
‘command ENQP. Routine 1SP is periodically called to do queue

60454300 B : 5-24.1

priority evaluation and updates the priority field in queued
file FSTs. DSD updates the priority field in a queued file FST
in performing the ENQP command. If both DSD and 1SP tried to
update the same queued file FST, a conflict would occur. DSD
performs the following sequence to avoid the possibility of
making a conflicting ENQP entry. First, the desired FNT is
interlocked via the SFIM mechanism. Then the entire FNT is
interlocked by reserving the FNCT pseudo-channel. After DSD
updates the appropriate information in the FST, the
pseudo-channel is released, clearing the FNCT interlock, and the
individual FNT interlock is cleared using a SFIM monitor
function.

"FNT ENTRY INTERLOCK

The FNT is also globally interlocked by those system routines
making new FNT entries by the reservation of the FNT entry
pseudo-channzt (FECT). This mechanism guarantees that a system
routine may determine where within the FNT to write the FNT/FST
entry without being disturbed by another system routine making
FNT/FST entries.

An example of the use of the FECT interlock mechanism is found
in routine OBF. Routine OBF obtains the FNT entry interlock by
reserving the FECT pseudo-channel. The FNT is then scanned for
an empty position. Routine OBF writes the FNT/FST entry at this
location and then releases the pseudo-channel, clearing the FECT
interlock.

JOB ADVANCEMENT

The individual FNT dinterlock must not be set on the job's input
file in order for the job to be advanced. The job advancement
process automatically sets the FNT interlock on the job's input
file to indicate that it is in a transition state. Thus, the
FNT interlock is always set for a job if the job advancement flag
(bit 53 in control point area word STSW) is set. (The converse
of this is not true; that is, the presence of the FNT interlock
does not imply that the job advance is set for the job.) The
issuance of the JACM (job advancement control) monitor function
by the system routines involved in the advancement process (1AJ,
1RO, and 1CJ) clears the FNT interlock when the job advance flag
is cleared. To facilitate the setting and clearing of the
individual FNT interlock during job advancement, all jobs have
an input file whose FST address is contained in control point
area word TFSW bits 59 through 48. The job advancement process,
including the JACM function, sets or clears the individual FNT
interlock for the FNT/FST entry pointed to by TFSW.

TRANSITION STATE SCHEDULING
For system routines to properly control transition state
activity it is necessary to set the FNT interlock on the queued

file or input/rollout file being manipulated before any
transition activity may take place.

60454300 B ' - 5-24.2

The following example shows how the individual FNT interlock is
used during the rollin and rollout transition states. In .-
following the example, remember that the same FNT position is
occupied by the job's rollout (when the job is rolled out) and
the job's dinput file (when the job is rolled in).

In the case of rolling in a user job, the scheduler (1SJ)

selects the job and then sets the FNT interlock on the rollout
file before assigning it to a control point. During the rollin
process, 1RI replaces the FNT/FST entry for the rollout file with
that for the job's input file and sets this FST address into
TFSW. When 1RI requests the job to be advanced, the FNT
interlock is cleared.

In the case of rolling out a user job, the rollout request (ROCM)
issued by the scheduler causes the job advance flag to be
checked. If the FNT interlock (on the input file) is already
set, the job advancement is requeued for reissuing. If the
conditions for job advancement are met and the FNT interlock is
not set, both the FNT interlock on the input file (as determined
through the TFSW entry) and the job advance flag are set, and
1AJ is called. Then 1AJ calls 1R0O. Routine 1RO writes the
rollout file FNT/FST entry at the address specified by TFSW and
issues a JACM function to clear the job advance flag, the FNT
interlock (which is now on the rollout file), and selected
control point area words including TFSW.

With the individual FNT dinterlock structure, system routines are
able to identify when transition states are completed by the
successful issuance of their own FNT dinterlock request. This in
turn prohibits a transition state from occurring while they
perform their specified function on that job or queued file.

SPECIAL PROCESSING

This section overviews the processing of subsystems, special
entry point jobs, and special RA+1 requests.

SUBSYSTEMS

A subsystem is a special type of job with many privileges not
granted to user jobs within the system. Some of the
characteristics of a subsystem are:

@ Cannot be rolled out except in system checkpoint
situations.

e Can make use of the intercontrol point communication and
special RA+1 requests (SIC and RSB) for receiving and
sending data buffers.

@ Can get a CPU priority above user jobs.

® Need not be restricted by JCB or VALIDUs; however it must

have a user index set in UIDW, in order to access
permanent files.

60454300 B 5-24.3

® May elect to run at a specific control point.

e Has an implicit special entry point (SSJ=) status.

@ Can request the CPUMTR to load a PP routine whose name
begins with a numeric (RA+1 call SPC). (Any PP request
from a normal job must be for a PP routine whose name
begins with a letter. ‘Any other PP call aborts the CPU
program.)

In order for a job to qualify as a subsystem, it must satisfy
each of the foLLow1ng requ1rements.

e Have a queue priority greater than LSSS (defined in
NOSTEXT) and have a byte for it in the SSCL words in CMR.

e Have an entry defined in 1DS so that it can be called

- from a DSD command.

e Have a unique queue priority, since it interacts with the
system based on its queue priority and not on its user
index, name, or control point number.

The current subsystems and their queue priorities are described
as follows. :

Subsystem Symbol Queue Priority
Deadstart Sequencing - DSPS 7777
Time-sharing (TELEX or IAF) TXPS 7776
Remote Batch (EI200) : EIPS . 7775
Unit Record (BATCHIO) : BIPS 7774
Magnetic Tapes (MAGNET) MTPS 7773
Transaction (TAF/TS,TAF/NAM) TRPS 7772 ‘
Time-sharing Stimulation ' o

~ (STIMULA) STPS 7771
Network Interface
Processor (NIP) 7 NMPS 7770
Remote Batch Facility (RBF) RBPS 7767
CYBER Data Management
Control System (CDCS) CDPS 7766
Message Control System (MCS) MCPS 7765
Mass Storage Control (MSM) MSPS 7764
Subsystem Startup
A subsystem has a PP program that initializes the subsystem.
For example, TELEX has 1TD; MAGNET, 1MT; €1200, 1LS; and so
forth. In many cases, the PP program is also the driver for the
subsystem in addition to performing its initialization. As an
example in this discussion, the initialization of the remote
batch facility (RBF) subsystem is used. The PP .routine 1SI
performs the control point initjalization for RBF (as well as
several other subsystems). -
The jobs for subsystem initialization are entered into the input

queue by 1DS functions 32 and 33. Function 33 is used when the

subsyst
functio
the DSD

6045430

em is activated by default when an AUTO. is done;
n 32 is used when the subsystem is activated by entering
command for the individual subsystem, Routine 1DS

0 A 5-25

maintains a table of parameters from which the FNT/FST input
queue entries for the subsystems are built. An entry in this
table has the following format.

byte O byte 1 byte 2 byte 3 byte 4
qap pp cp sm sb

qp Subsystem queue priority as described previously

pp Name of the PP processor that performs the
subsystem control point initialization

cp Relative control point number required by the
subsystem .

sm Mask bit setting (12 bits) that corresponds to

the subsystem enabled/disabled bit for the
subsystem in SSTL
sb Byte in SSTL to which sm applies

Subsystems have a requirement to reside at a given control point
in order to minimize the system overhead used by the subsystem
(for example, never storage moved). The number 1 for c¢p
indicates that control point 1 is required; 2, control point 2
required; and so on. If cp is greater than 40B, the required
control point is determined as the system control point minus 1
minus the complement of c¢cp. Thus, the value 77B indicates that
the Llast control point is required; 76, last control point minus
1 is required; and so on. If a rollable job is at the control
point, it is rolled out so that the subsystem may have the
control point it requires.

The following octal values are referenced through the symbol
1ASD.

Subsystem ap :1:] cp sm sb
TELEX/IAF TXPS 1TD 1 2000 1
EI200 EIPS 1Ls 77 1000 1
BATCHIO BIPS 110 76 4000 1
MAGNET MTPS 1MT 75 0400 1
TAF/TS TRPS 1TP 2 0200 1
TAF/NAM TRPS 181 2 0004 1
NIP NMPS 181 74 0002 1
RBF RBPS 181 73 0001 1
STIMULA* STPS 1TS 77 0000 0
Mass Storagex MSPS CMS T4 0100 1
cDCS CDPS 181 71 1000 2
MCS MCPS 181 72 2000 2
Deadstart»* DSPS SET 1 0000 0

When 1D0S is called to issue the subsystem jnitialization jobs
through an AUTO. or an individual subsystem DSD command, such as
TELEX. or n.RBFffff., it builds an FNT/FST entry using data from
this table. The FNT/FST produced as the result of an n.RBFffff.
command would have the following format.

60454300 A 5~26

59 53 47 41 35 17 1 5 0

i .S I . o SYOT | INFT 0
(pp) P o Got) | (1)

o | 77 . fiff | on AU
- ” (gp)

pp Controlling routine

cp - Control point required

sn Job sequence number

jot Job origin type

ft File type

fffef Procedure file sequence number

fl Field Length

ap Queue priority

Eventually, 1SJ is initiated and if no other jobs are found of a
higher priority (that is, other subsystems), it selects this job
as the best candidate for scheduling. It then calls its 3SA
overlay to schedule this candidate as a special subsystem since
its queue priority is greater than LSSS. The FNT/FST entry and
the three subsystem control words SSCL, SSCL+1, and SSCL+2 are
read. If the byte in the SSCL word for this subsystem is
nonzero, then the subsystem is already active and so all
interlocks are cleared and the PP is dropped. If the subsystem
control byte is zero, then the required control point must be
assigned for this job. 1If the requested control point is
occupied by a lower priority job, the job is rolled out so that
the control point can be used by the subsystem. If the job at
the control point is of a greater priority than the subsystenm,
the subsystem uses the next available control point.

When the control point becomes available, it is assigned to the
subsystem. The control point number is entered in byte 4 of the
FNT entry and in the subsystem control word. Protective coding
prevents a subsystem from requesting a control point which is
not defined in the system. The control point area is then built
with all Limit values set to unlimited/infinite.

The control statement pointer (CSPW) is set to indicate an EOR
on the input file. Default family information is set into PFCW
and the family count incremented. The subsystem's queue
priority and a CPU priority of MRPS-2 are set in JCIW. The
procedure file sequence number is set in CSBW for use by 1SI.
The exit mode 7007 is set in the control point exchange package.
The scheduler active bit is cleared from JSCL+1, the FNT
interlock cleared, and the job name written into this PP's input
register with an exit to PPR so that the PP program to
initialize the subsystem is loaded.

Once the PP program is loaded into this PP, it initializes the
control point field length, and so on, to fit the requirements
of the subsystem, set up a control statement stream or procedure
file call (for TAF, NIP, RBF), and call 1AJ to process the
control statement stream which brings the subsystem into
execution.

60454300 A | ' 5-27

SPECIAL ENTRY POINTS

Many system operations can be performed more efficiently by a
CPU routine rather than a PP routine. However, normal CPU
routines are restricted by the system from accessing system
information. To allow CPU routines to perform restricted system
operations, special entry points are used. That is, a CPU
routine using special entry points can access restricted system
information such as CMR. ALl special entry points are

three characters in lLength followed by an equal (=) sign.

The special entry points available are the following.

Special Entry Point Description

ARG= Suppress arguments processing (RA+2
through RA+63)

DMP= Dump (save) previous job before lLoad

RFL= Automatic FL specification for Load

MFL= Minimum FL specification for lLoad

SDM= Suppress control statement dayfile
message

SSM= Secure system memory

SSJ= Special system job specifications

VAL= Define job as a validation processor

A CPU routine with any of the preceding special entry points
defined is handled specially by SYSEDIT. That is, SYSEDIT
appends an extra word (SEPA) to the CLD entry for this routine.
This word is a condensed version of the special entry points
defined in the routine and are used by 1AJ when the routine is
Loaded. The format of SEPA is as follows.

59 17 0

SEPA fiags sa
flags Each bit set indicates the following.

Bit Description

59 Indicates special entry point table entry

58=-54 Zero

53 ARG= entry point present

52 DMP= entry point present

51 SDM= entry point present

50 SSJ= entry point present

49 VAL= entry point present

48 SSM= entry point present

47-36 Zero

35 Restart rollin

34 Zero

60454300 A 5-28

Bit Descriptidn

33 Suppress DMP= on control statement call

32 ‘ Only create DM* with nothing on it

31 Dump FNT entries, control point area and
field Length, to file DMx*

30 Create file DM* as an unlocked file

29-18 0, for dump of full FL; nonzero .for dump of
FL* 100B of FL

sa SSJ= parameter block address

AlL normal ABS entry point names in the CLD will have bit
59 of SEPA equal to 0.

Routine 1AJ detects the SEPA word and processes the load
accordingly. System routines that are called via special
entry points include CHKPT, CPMEM, and RESEX. These routines can
be called from a PP or via an RA+1 request summarized as follows.

RA+1 PP Request CPU Request

Reguest Processor Processor Description
CKP SFP CHKPT Checkpoint request
DMP SFP CPMEM Dump FL
REQ SFP RESEX REQUEST macro call
LFM/PFM LFM/PFM RESEX Tape/pack request

These CPU routines can be called by an RA+1 request or by another
PP routine. (When RA+1 is used to make the call, autorecall is
designated.) The routine names CKP, DMP, and REQ must not be in
the PP Library since these calls are processed by SFP. In order
for the PP request processor (SFP, LFM, or PFM) to call the CPU
routine, the entry point name (which is the same as the RA+1
request) is placed in SPCW in the control point area. The PP
request processor can perform the following.

® Set any completion or status bits in the requesting jobs
FL.

e Set bits 38, 39, and 40 of SPCW as desired.

e Write its own PP input register image in RA+1 so that
this PP routine is called upon completion of the CPU
routine.

e Set rollout flag (ROCM function). ,
Routine 1AJ picks up SPCW and Lloads the appropriate CPU routine
for the specified entry point name. The upper six bits of SPCW
are used as an interlock to prevent more than one call at a time
from being processed. This means that one routine using special
entry points cannot call another such routine. The upper six
bits of SPCW are equal to 77B if such a routine is active. The
CPU request processor contains entry points for the system
function desired. For instance, RESEX has entry point names REQ,
LFM, and PFM. When the PP request processor has completed
setting up SPCW, it drops and 1AJ continues the processing.
Routine 1AJ rolls out the calling CPU routine (filename is DMx)

60454300 A , 5-29

if a DMP= entry point exists for the CPU request processor
routine to be lLoaded. 1If a parameter block address has been
specified in the SPCW word, 1AJ picks up the parameter List and
stores it in RA+30B through RA+47B. The SPCW word is stored in
tocation RA+27B (defined by symbol SPPR), as shown in figure
5-11. (This is available only if DMP= has been specified.)
Later, this parameter List will be available to the CPU reguest
processor. Now the CPU routine is loaded and processing begins
at the appropriate entry point. Prior to normal termination,
the CP request processor can set a return status in RA+27B
(SPPR). This status is later stored in bits 35 through 24 of
SPCW by 1RI.

when 1AJ detects that the CPU request processor has completed,
it calls 1RI to perform the following.

e Store the return status in SPCW.
e Retrieve the parameter block from RA+30B through RA+47B.

e Reload the control area and job's FL from the DM*x file,
if it exists.

e Store the updated parameter block back into the job's FL.
e Clear SPCW word.

Routine 1AJ now restarts the original calling program where it
left off.

60454300 A 5-30

RA+O

RA+1

(SPPR) RA+2’78

RA+ 308

RA+4?8

(PGNR) RA+64g

Figure 5-11.

60454300 A

20B word parameter block
stored here (if program requires
more than 20B words, it must
read the DMP file DM¥). Only
available with DMP= special
entry point. "

- Contents of SPPR stored

here when loading CPU
processor. CPU processor
may put a status in byte
2 for return to the PP
calling program.

Cleared to indicate call
was initiated by a PP-
request processor (other—
wise nonzero indicates
normal control statement
initiation).

Field Length of Loaded CPU Request Processor

wi
[}

31

ARG= Special Entry Point

ARG= is used by a job wishing to do its own control statement
argument processing. If present, arguments are not passed to
RA+2, but the entire control statement image, including statement
Label and other options ($,/), is placed in RA+70.

DMP= Special Entry Point

A program using the DMP= entry point should set up bits 35
through 18 in SEPA with a PP routine (in the case of the control
statement or macro DMP it is done automatically) as previously
described.

The DMx file is the rollout file. The only difference is in the
FNT. If it were a rollout file, then the FNT would be as
follows.

59 17 11 5 Q

job | type cp
org |ROFT| =0

job name

However, as a DM* file the FNT would be as follows and the file
remains attached to this control point.

59 o 17 5 0O

job | type cp

DM* org |LOFT{ no.

DM* is not a legal file name and a CPU user cannot create a file
whose name contains special characters. However, a CPU routine
may read or write such a file if it already exists. Hence, 1RO
must be asked to create the DM* file if a special entry point
job needs to use the file.

The flow of a DMP= request is as follows.

e 1AJ finds this control point idle. That is, W =X = R =
0 or DIS calls 1AJ directly.

e 1AJ calls 1RO, which creates a rollout file as specified
in bits 35 through 18 of SEPA. The file will be named DM*
and left attached to the control point as a local file.

e 1AJ then loads the CPU program containing the entry point
name specified in SPCW.

e The CPU processor completes normally (END or ABT).
@ 1AJ is called to advance the job; it detects that a DMP=
has just completed and calls 1RI to restore the control

point FL and control point area from the DMx file.

e 1AJ advances the job or restarts the previous job.

60454300 A 5-32

Figures 5-12 through 5-14 illustrate the DMP= processing while
figures 5-15 through 5-21 illustrate the flow charts for this
procedure, using DMP as a example.

RFL= Special Entry Point

When a program with RFL= is lLoaded from the system, the
program's field length is set to the value of RFL= (rounded to
the next higher 1008B).

MFL= Special Entry Point

Same as RFL= except nothing is changed if the RFL (as set by the
last RFL control statement or by the last SETRFL macro call) is
greater than the MFL= value (if present RFL> MFL=, then use
nresent. RFL value). : »

SDM= Special Entry Point

For programs with SDM= entry points, no dayfile message is
generated on the control statement call. The program should
ijssue its own messages. Using ACCFAM as an example, the

password on a USER statement should not appear in the dayfile.
When USER,ABCUSER,PASSWRD. is issued, ACCFAM using an SDM= entry
point can strip off the password and issue USER, ABCUSER,. to the
dayfile. ‘

60454300 A 5-33

Step 1 (temporary rollout)

System

Control point area

>

FNT/FST

N—

N~

DM* file

RA
Job field length
FL
Figure 5-12.
L
60454300 A

DMP= Processing (1AJ Calls 1RO)

5=34

Step 2 (DMP= job load and execution)

Control point areq

FNT/FST

RA

FL

Job field length

System

O

DMP= binary

N—

DM file

Figure 5-13.

60454300 A

1AJ Calls LDR to Load DMP= Program

Step 3 (rollin DM file)

Control point area

FNT/FST

RA

Job field length

FL

System

>

~

DM file

Figure 5-14. 1AJ Calls 1RI to Restore the Job

60454300 A

»(1AJ)=
A
1RO call
called 1RO
can
we advance @
this job
proeess
control
statement
< has call
1R0O/1RI 1Rl
just com-
search earch
CLD control no o EL?
statement
* yes v
. setup LDR executive
yes did to load | load | »{ loaded
| w;'&'; (_i_ a CPMEM A routine routine

Figure 5-15. General Flow

60454300 A 5-37

Figure 5-16.

60454300 A

Previous job
was not DMP =

can
we advance
this job

yes

process Crack control statement
control DMP (X, Y)
statement !

this is not
na aDMP=job

yet
search Find DMP
CLD asa
; part of
* CPMEM

-did
we find a
DMP =

yes

CPMEM has
a DMP = entry
point

Pass 1 (Job Flow Has Come to a DMP
Control Statement)

1RO has not

been called yet
no

1RO
called

call
1RO

Figure 5-17. Pass 2

60454300 A

5-39

1RO

called
yes
1RO was called
last time
TCS)=

process TCS has a trap for DMP = already
control found so it doesn’t crack the
statement control statement again.

has
1 RO/1RI
just com-
pleted

We called
1RO in the
last pass

pmp
control
statement

setup LDR execute
to load - load |———(loaded
CPMEM routine routine

Figure 5-18. Pass 3

60454300 A : 5

40

CPMEM has completed, job needs to advance te next
control statement

1R0
called
yes
yes
TCS)=
Proct:s.rl, | TCS uses DMP = last control statement in preset and
::a';m:ent does not crack the new control statement.

has
1RO/1RI
just com-
pleted

call
1RI

Figure 5-19. Pass 4

60454300 A

1Ad

1RO

called
yes

process
control
statement

Y

This time TCS cracks the new control
statement. Preset knows that 1RI was called
and we are now ready to get the new
control statement.

has
1RO/1RI
just com-
pleted

1R{ just
completed

Load routine

DMP search which may not
control cLD have a DMP =
entry point*

statement

exscute
loaded
routine

load
routine

*1 A special entry point job cannot initiate another special
entry point job

60454300 A

Figure 5-20. Pass 5

5SJ= Special Entry Point

Programs with SSJ= entry points are defined as special system
jobs. The address specified by the SSJ= entry point, determines
the start of a parameter area where the user accounting control
words from the control point area are temporarily stored to

allow the special system job access beyond the user's validation.
When the special system job completes (or aborts) the user's
validation parameters are retrieved from the parameter areas
within the special system job's field length and restored to

the control point area. All Local files created by the special
system job (ID=SSID=74) are returned before normal control
statement processing is resumed. Whenever an SSJ= job creates

a file, the FST ID field is set to SSID (74B). 1In this way,

1AJ can ensure that any files attached to this control point
during SSJ= processing are released prior to returning control to
the normal user.

The common deck COMSSSJ 4is provided to supply the calling
program with special system job parameter equivalences.

An RFL= entry point must precede the SSJ= entry point to allow
SYSEDIT to verify that the parameter area fits within the
special system jobs field Length., If this condition is not
satisfied, the SSJ= entry point is considered a normal entry
point for the program and no special processing will be done for
it. The only acceptable order is:

ENTRY RFL=
ENTRY SSJ=

The first word of the parameter area (SPPS) is used to set the
control point area values. If it is zero, the current values
are retajined. Limits for these values are:

0 < CPU priority < 708 v
0 < queue priority < MXPS+1
0 X time Llimit < 777778

Any other values are ignored. Thus, it can be ensured that a
task does not get a time Limit error, that a task has a higher
CPU priority than a normal job, and so on. Values are reset when
the task terminates.

60454300 A 5=43

The S$SSJ= parameter block format is as follows.

59 .47 23 17 11 v 0
SPPS o time fimit p/r?c‘;iuty‘ it
UIDS - user number a o user index
ALMS : éxoct copy of control point area word AI;MW
ACLS -exact copy of control point area word ACLW
AACS exact copy of control point area word AACW

The entire SSJ= block is swapped with the control point area
values unless word 0 is zero. If word 0 is zero, then just
store the user's control point area in the 5-word block. In any
case, when the SSJ= completes, the 5-word block is restored into
the user's control point area. Thus the $SJ= program can and
-does place any values it sets in this block into the control
point area. : . :

That is the way that ACCFAM sets up the user verification area

in the control point area, and the way that CHARGE clears the
VAL= flag (bit 17) in UIDW. Also, the swap allows the SSJ=
program to specify UI = 3777778 for accessing validation,
accounting, and resource files. If the SSJ= user defines SSJ= as
0, then the swap does not occur, and all files created by the
$SJ= user do not get ID = 74B. The files remain for the caller,
but the job gets SSJ= privileges (SIC, RSB, and so on).

VAL= Special Entry Point-

When validation is enabled, the system aborts any job of
nonsystem (SYOT) origin which attempts to Load and execute as
the first control statement, any routine which does not have a
VAL= entry point. This is the method employed to check
validation. The first two or three statements of a job stream
must be job, USER, and CHARGE (if needed). USER causes the
loading of ACCFAM, and CHARGE causes the loading of CHARGE, both
of which contain VAL= entry points. .The system allows these
routines to run, and assuming that they do not abort the job,
they enter this job stream into the system. Once they are done,
the VAL= system checking is no Longer done for this job. If a
user did not have a USER statement as the second statement, it
forces a load of a routine without a VAL= entry point, and the
job is aborted by the system.

60454300 A 5~44

SSM= Special Entry Point

The SSM= entry point causes the secure system memory status to
be set in the control point area.' The setting of the secure
system memory bit (bit 59 in DBAW) prevents the dumping of any
portion of the job's field Length.

SPECIAL RA+1 REQUESTS

The following RA+1 requests can be used only by a subsystem.

e SIC
® RSB
e SPC

SIC and RSB can also be used by S$SSJ= or queue priority greater
than MXPS type jobs. SPC is used to call special PP routines.
SIC and RSB are used for intercontrol point communications.

Special PP Calls

A normal CPU routine may request only PP routines whose name
begins with a Letter. This is a protective feature to keep
normal jobs from accessing certain system PP routines. By
convention, any PP routine which should be available to a user,
and is coded in such a way as to keep from destroying the system
if called by an improper request, has a letter as the first
character of its name. Other restricted PP routines have a
number as the first character their names.

‘The SPC request allows a CPU routine to call a special PP
routine (such as IAF or TELEX calling 1TA). The SPC request is
as follows.

59 d 17 0

RA +1 SPC : o addr

addr First word address of a List of names of the
PP routines desired and their arguments. The
List is terminated by a zero word.
In a SPC request, the following conditions apply.

e Autorecall is not honored.

@ If the addr word is cleared, the request has been honored
and the PP routine started. ’

e If the addr word is unchanged when the CPU regains
control,'the PP routine was not started (possible PP
saturation, for example.

e The call is honored only for jobs whose queue priority is
greater than MXPS. AlL other job steps are aborted.

60454300 A 5-45

The format of location addr is as follows.

59 41 35 0

addr PP routine 0

, arguments
desired d

Intercontrol Point Communication

The contrel point concept allows each control point to run
independently of any other control points in the system. In
addition each control point is protected from any other control
point destroying any part of its field length. 1In some cases,
however, it is necessary for one control point to communicate
with another, as in TELEX to TAF/TS, and RESEX to MAGNET.

A subsystem or any program with SSJ= or a queue priority greater
than MXPS wishing to communicate with some other control point
(maybe another subsystem) by sending information, can set up a
communication block using ICAW in the control point area and
transfer it to a designated control point. Also, it may receive
a block of data from some other control point (which may also be
another subsystem).

The control of the transfer is based on the subsystem's queue
priority (which is why they must be unique). The buffers are
defined in ICAW. The SIC and RSB RA+1 requests are used for
this communication.

SIC Request
The SIC request is used to send an intercontrol point data block

from a control point program to the specified subsystem. The
format of the request is as fol lows.

59 40 35 17 0

%
RA+ 1 SIC o buff st

g

r 1 if autorecall is desired (bit 40)

buff First word address of the buffer to be

transferred to the subsystem
st Address of status word for the transfer

The format of location st is as follows.

59 44 29 0
777
st bn sqp ////A
7
bn Buffer number of subsystem to transfer to
sqp Destination subsystem queue priority

60454300 A 5-46

A block starting at buff will be moved to the indicated
subsystem. The block length is specified in bits 17 through O
of the first word of the block (buff), which includes this
header. The block length must be less than 101B (to force
CPUMTR in MTR mode; this operation must be very fast).

NOTE

The request is honored only from jobs with
gueue priority greater than or equal to MXPS
(subsystem status), or an $SSJ= entry point
defined, or with access bit CSTP (user may
access special transaction functions) turned
“on. I1f these conditions are not met, the
‘call is treated as a call for a PP routine.

60454300 A 5-47

After the request is processed, lLocation st has the following

format.
59 44 29 0
st bn sqp reply
bn Unchanged
sqp Unchanged

1f transfer completed successfully
is not present

reply 1
3 1If designation subsystem

the system

If subsystem buffer

moved, or subsystem job is advancing

7 If block length as specified in the first

word is larger than that permitted by the

subsystem

I1f destination buffer

subsystem

in

5% is full, subsystem being

11 is undefined by the

The format of the buffer block to be transferred is as follows.

59 11 0
buff +0 0 b‘°:“n ‘f’;g”‘
+1 1st data word
+2 2nd data word
[] []
. :: . ::
L ®
+n-1 n-1 data word
+n nth data word

NOTE

n is Less than or equal to 100B so entire

block Length

- - —— .=

*If autorecall

until condition 5 ends.
is full by setting the first word
if the first word of the buffer
cannot receive data;

buffer
That is,
nonzero it
receive data.

60454300 A

is specified,

is 1018B.

the control point remains in recatl
The subsystem may indicate whether its

in the buffer nonzero.

in the subsystem 1is

if it is ready to

it is zero,

5-48

RSB Request

The RSB request is used to send an intercontrol point block from

a subsystem to the calling control point; if no subsystem is

specified, from absolute CM. The calling routine must have an
$SJ= entry point defined.

‘The format for this-call is as follows.

59 40 35 29 17 0
i1
RA+1 RSB grégé(o sap st
r "1 ¥f autorecall desired (bit 40)
sqgp Subsystem gqueue priority (or control point to

read). If zero, then block is read from
absolute memory or relative to caller's control
point area. '

st Address of status for the read.

The format of Location st is as follows.

59 47 ‘ 35 17 0
st 0 wC k addr buff
Qc Number of words to read.
addr Address to read from CM or buffer address
relative to the subsystem.
buff Address of buffer to receive data in this

control point's field Length. When sqp = 0, the
contents of buff determines whether the read is
from absolute CM or relative to the caller's
control point area.

If buff is less than 0, the read is from absolute CM and addr in
the st word is the absolute address in CM to begin the read.

If buff is zero or greater, the read is relative to the caller's
control point area, and buff contains a List of addresses
Located within the control point area which are to be read. The
List ends at wc or a zero lList entry. The contents of the
control point area address read is stored in the buff location
which contains that address.

Location buff is a flag denoting a read from absolute memory or

relative to the control point area in the case where sqp is 0.
The calling program must have an SSJ= entry point.

60454300 A 549

After the request is processed, the format of location st is as
follows.

59 47 35 17 0

st reply wce addr buff

reply 4000B Transfer completed successfully
2000B Subsystem not present

WC Unchanged
addr Unchanged
buff Unchanged

If sqp is nonzero, the buffer is filled. 1If sgp is zero and
buff is less than zero, buff is filled from absolute memory as
specified in the addr field. If sgp is zero, and buff is
greater than or equal to zero (control point area read), then an
example of this format is as follows.

59 0

buff +0 +1

+1 STSW

+2 STSW-178B

.

. :: . ::

® ®
+WC~-2 | . MS1W
+WC -1 APJW

In the preceding example, buff+1 contains the job status word
from the control point area; buff+2 contains the second word of
the exchange package area (from the exchange package area);
buff+wc=2 is the first message buffer area; and buff+wc-1 is the
program number area.

NOTE

The buffer's length is wc words. It is not
possible to get the first word of the
exchange package area since the address would
be 0 relative to the control point area and
any 0 word ends the Llist. It would be
necessary to know the absolute address of

the control point area to get the first word
of the control point area.

The above is an example and is not intended to imply that only
the control point area shown can be read.

60454300 A 5-50

JOB FLOW 6

System job flow is controlled by routines 1SJ, 1SP, 1AJ, 1CJ,
1R0, and 1RI.

JOB SCHEDULER = 18J

The job scheduler (1SJ) scans the FNT/FST entries Looking for
files of type input (INFT) or type rollout (ROFT). It builds
tables which it uses to determine which of the jobs in the input
or rollout queue based on priority are to be assigned to a
control point and started (Table 6-1). Routine 1SJ rolls out
any jobs which have a lLower priority and attempts to start the
best job. If 1SJ cannot find a best job to start or cannot get
enough resources for the best job, it drops.

The next time 1SJ is called, the best job may not be the same
one picked the lLast time. A best job is only guaranteed a
startup if the resources necessary are available at the time the
job is being prepared. '

Routine 1SJ works with the current system status. Whenever many
jobs make changes, these changes affect 1SJ only while it is
executing. The JSCL and JSCL+1 words ensure that only one 1SJ
can run at any time in the system. The scheduler cycles itself
until no jobs remain to be scheduled or a certain mass storage
activity threshold is reached. This ensures that the system fis
not constantlty scheduling jobs in and out and thereby wasting
computer resources..

The scheduler selects the candidate by using the subroutine
Search For Job (SFJ). The selection is done on the following
basis.

1. The highest priority job that will fit in unassigned or
rolling memory within the service constraints FL
(maximum individual job field length), FLE (maximum ECS
field Length), and AM (maximum memory allowed) for the
candidate's job origin type.

2. 1If candidates of equal priority are found, the job
selected is the one residing on the mass storage device
with the least amount of activity. The amount of disk
activity is determined by the following factors:
channel busy; channel being requested; and unit
reservation.

3. If the mass storage activity is also equal, the job
with the largest field Length is selected.

4. If no job is selected, but one was rejected due to
service constraints, it may be scheduled if no jobs
have to be rolled out. 1If this is done, the job's
priority will be set to its origin type's lLower bound.
This prevents resources from sitting idle during
periods of Low activity.

60454300 A 6-1

J]Location

TACP

TMFO

TMEO

TABLE 6-1

| - Description

|Active control
|points. One-word
lentry terminated
Ilby zero entry.
|sorted in
|descending
lpriority.

|

|[Tablte of rollout
|status. One-word
|entry indexed by
lcontrol point

| number.

|

|Job field Llength.
|One-word entry
|indexed by control
|point number.

|[Job ECS field

| lLength. One-word
lentry indexed by
Jcontrol point
{number.

|lJob priority.
|One-word entry
]indexed by control
lpoint number.

|Job origin type.
|One=-word entry

| indexed by control
|point number. Set
Jonly if job active.
|

|Table of total
|available field

| length for all
|jobs of an origin
|type. One-word
lentry indexed by
lorigin type.

|

|Table of total ECS
lavailable field

| length for all
|]jobs of an origin
|type. One-word
lentry indexed by
lorigin type.

- - — e - > W W . WS S S G . W G A e WP E GBS R WS e W G WL R W NS M R N R A R R D WS M W WS e e

available

1SJ TABLES
Bits | Description
11 | Rollout in process
!
10 | Rollout requested (used
] in subroutine CFL only)
9-5 | Zero
4-0 | Control point number
|
| .
11 | Rollout in process
10 | Rollout requested
| C(used in CFL only)
9-0 | Zero
|
I
11-0 | Field length assigned
| at control point
|
|
|
11-0 | ECS field Length
| assigned at control
| point
|
|
| ‘
11-0 { Priority of job
|
|
|
11-0 | Origin type of job
|
|
|
|
|
11-0 | Field lLength available
|
|
|
|
I
I
|
11-0~{ ECS field Length
|
|
|
|
|

- . . . e W MR PR AP W WS (ER G S G S A S S R W A SN AU P W M G G W W W S R W P W Ty A W W D e e S e G

60454300 A

6-2

TABLE 6-1. 1SJ TABLES (CONTINUED)

|Location | Description | Bits | Description |
TAFO |[Table of assigned 11-0 Field Length assigned.
|field Length by
lorigin type.
|One-word entry
| indexed by origin
atype.
TAEO |Table of assigned 11-0
|ECS field Llength
|by origin type.
|One-word entry
|]indexed by origin
ltype. '

| |
| |
| |
| |
| |
| |
{ } ECS field Length
| I
| |
| |
| |
| | |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| I
| |
| |

assigned

11-0 Maximum FL allowable

TMJO |Table of maximum
: for a job

|field Length per
|job by origin type.
|One-word entry
|indexed by origin:
}type.

TMXO |Table of maximum
|Ecs field Length
|per job by origin
|type. One-word
|entry indexed by
lorigin type.

- - =, - A W WP M= A W RS N A A S MO W S R W W M S S R S R S S MmO A W em S G R A S s S e

Maximum ECS field
Length allowable for a
job

11-0

60454300 A 6-3

TABLE 6-1. 1SJ TABLES (CONTINUED)

- - —— - I W M N AT WD e A - W S WP D Y P S e - - - - - ——— —— - ————— - - -

DACT |[pevice activity
| count tabie.

| |
! | Device activity as
| I
] |One-word entry |
I |
l I
l |

|

|

| found in byte 0O of MST

| word DALL
| indexed by | -
|equipment number. {

The scheduler is requested periodically or on a demand basis
through the RSJM monitor function (refer to section 3). CPUMTR
determines if the scheduler is active (bit 59 set in JSCL+1) and
if so, takes no action. If the scheduler is not active, 1SJ is
called unless the scheduling delay in JSCL has expired. 1In this
case 1SP is called. Routine 1SP calls 1SJ into its PP when it
has finished its tasks.

The RSJM function is issued when jobs are placed into the input
or rollout queues (by QFM, 1RD, or 1TA), when a job is started
(by 1AJ), and by certain routines when it is desirable to begin
scheduling activities after they have completed (1CK, 1DS, 1MB,
1SP, and 3SA).

The call to 1SJ has the following format:

59 41 35 0
RA-+1 1SJ] cp 0]
cp Control point number

A flowchart of the main Lloop of 1SJ (SCJ), is shown in figure
6-1. The main subroutines of 1SJ are described in the following
paragraphs.

60454300 B 64

PRS

N\

Y

<

/

SJc

2\

preset

/

@—%

set job control.info
in TMJO, TMFO, TMEQ,
and TMXO

initialize
gA scheduling yes
- JP disabled
mp
l DDA
buiid
TAFQ table determine
and TAEQ table disk activity)

{

SCS

AN

SFJ

<

set control
point status

<
<

AN
AN

search for job)

 /

/

available memory
in ACML

yes

job at
CP requesting FL
increase

Figure 6-1.

60454300 A

job found

1SJ Main Loop SCJ

()

clear schedular
active interlock
in JSCL +1

set humber of
control points (NC)

y

read
schedular control
from INWL

sufficient
memory

if
sufficient
memory with
rollouts

]
CMR '\

, /

yes clear memory
e\ & request)
Qe) @

re-enable
rollouts

memory for
control point
~_job

Figure 6=1. 1SJ Main Loop SCJ (Continued)

60454300 A 6-6

FNT

job in queue interlocked

cP O\ AL\

/) | [/

\

if
control point
available

if PPUs
ayailable

[SIF

' set FNT
interlock

if recyele
allowed

*1 The job in queue cond'ttwn tells 1S4 if it is try1ng to
schedule a job to a control point or attempting to increase a
running job's field length

Figure 6-1. 18J Main Loop SCJ (Continued)

60454300 A 6-7

SET CONTROL POINT STATUS (SCS)

SCS builds the TACP, TJFL, TJEC, TRST, TJOT, TJPR, TAFO, and TAEO
tables from information contained in the control point area. It
initializes direct cells AC (available control points), AM
(available CM), AE (available ECS), RM (rollout CM), RE (rotlout
ECS), JC (control point with field lLength request), JF or JE
(amount of CM or ECS JC requires), and JP (queue priority of JC).

SET JOB CONTROL (SJ4C)

SJC builds the TMJO TMXO0, TMEC, and TMFO tables from the job
control area.

DETERMINE DISK ACTIVITY (DDA)

DDA builds the DACT table. DACT is the device activity
count as found in byte 0 of MST word DALL.

SEARCH FOR JOB (SFJ)

SFJ chooses the best candidate for scheduling. If on the first
pass in SFJ no candidate was selected and if a job had been
rejected because of service constraints, the TMJO, TMFO, TMXO and
TMEC tables are set with unlimited values, rollout disallowed,
and a second pass through SFJ made. SFJ is flowcharted as figure
6-2.

COMMIT FIELD LENGTH (CFL)

CFL selects which jobs need to be rolled out in order to obtain
the required amount of field Length. ALL jobs necessary to be
rotled will have a ROCM set for their control point. Jobs of
the same origin type will be rolled before jobs of different job
origins, if possible.

COMMIT CONTROL POINT (CCP)

CCP selects the control point for the job. If no control points
are available and none are currently being rolled, a control
point with a Lower priority is selected to be rolled out and a
ROCM isued on that control point. If control points are
available, the control point selected is determined as follows
(consider the control point's field length to include the field.
length of all unoccupied control points following it).

1. Exact fit
2. Smallest hole that is Larger than needed
3. Largest hole if none is big enough

60454300 B 6-8

This selection process minimizes the amount of storage movement
necessary to give the control point the required field length.

ASSIGN JOB (ASJ)

ASJ requests the storage for the job, initializes the JNMW and
'TFSW control point words, sets queue priority and time slices in
JCIW and TSCW, and calls 1AJ or 1RI to process the job. Routine
1AJ is called if the job is scheduled from the input queue and
1RI is called if the jos is scheduled from the rollout queue.

If a PP is available, a RPPM call is made for 1AJ or 1RI. If a
PP is not available or one is not assigned, the scheduler active
bit (bit 59 in JSCL+1) is cleared and this PP is used for the
1AJ and 1RI processing.

SCHEDULE SPECIAL SUBSYSTEM (SSS)

SSS is contained in overlay 3SA and is used to schedule jobs
whose queue priority is larger than LSSS, The FNT/FST entry and
the three subsystem control words SSCL, SSCL+1, and SSCL+2 are
read. If the byte in the SSCL word for this subsystem is
nonzero, then the subsystem is already active and all interlocks
will be cleared and the PP dropped. If the subsystem control
byte is zero, then the required control point must be assigned
for this job. If the requested control point is occupied by a
Lower priority job, the job will be rolled so that the control
point can be used by the subsystem. If the job at the control
point is of Llarger priority than the subsystem, the subsystem
Wwill use the next available control point. When the control
point becomes available, it is assigned to the subsystem. The
control point number is entered in byte 4 of the FNT entry and
in the subsystem control word. Protective coding prevents a
subsystem from requesting a control point which is not defined
in the system. The control point area is then built with all
Limit values set to unlimited or infinite. The control
statement pointer (CSPW) is set to indicate an EOR on the input
file. Default family information is set into PFCW and the
family count incremented. The subsystem's queue priority and a
CPU priority of MRPS-2 are set in JCIW. The procedure file
sequence number is set in CSBW for use by 1SI. The exit mode
7007 is set in the control point exchange package. The
scheduler active bit is cleared from JSCL+1, the FNT interlock
cleared, and the job name written into this PP's dinput register
With an exit to PPR so that the PP program to initialize the
subsystem will be loaded. Once the PP program is loaded into
this PP, it initijalizes the control point field Length, and so
on, to fit the requirements of the subsystem, sets up a control
statement stream or procedure file call (for TAF, NIP, RBF), and
calls 1AJ to process the stream which brings the subsystem into
execution.

60454300 A 6-9

SFJ)

clear T4, FA,
and JP;
set MP = -0

read FNT

blank entry

read FST

=0

if input yes

or roliout

Figure 6-2. SFJ

60454300 A

‘ priority
> MNPS

priority
in error
table

processor
defined

yes

exit to
processor

- Search For Job

previous
job has lower
priority

" priorities equal

previous
job has hetter MS
activity

equal
MS activity

previous job
smaller

origin type

\

set origin
roliable FL = 0

Figure 6-2.

60454300 A

CP available

" FL/FLE
available

SFJ - Search For Job (Continued)

Y
|SFJ9|

job
within origin
FL/FLE
limits

within origin
AM limits if other
jobs rolled

> yes
Vy

set origin
rollable FL (FO)

60454300 A

Figure 6-2.

Y

set priority (JP)

Y

set CM FL
(JF) and

_ECS FL (JE)

Y

set rejection
flag (T4)

set previous
MS activity (MP)
and current
MS activity (MS)

A

set FST
address (FA)

!

save FNT for
SFIM in SIFA

\ J

l SCJ2 l

- Search For Job (Continued)

antoroli
disabled

scheduling
after reject

include rollable
memory with
available memory

\

check TACP

Figure 6-2.

60454300 A

end of table

job
rolling out

job at
CP has higher
priority

same origin

yes

“ enough
- memory for
job

no

add FL, FLE
for arigin

-
aaud

\

add rollable
memory

SFJ - Search For job (Continued)

iob yes

selected

subsystem

no \J

/ asA/sss \
return
- schedule special
subsystem

jobs
rejected

yes

disallow rollouts

\i

remove originm
AM, FL, EC, and EM
restrictions

Figure 6-2. SFJ - Search For Job (Continued)

60454300 A 6-14

PRIORITY EVALUATOR - 1SP

Routine 1SP is called periodically by CPUMTR to perform the
following functions.

Evaluate priorities of files in various queues.

Check central memory time slices for jobs at control
points. If a time slice has expired, its priority is
set to the lower bound for the job origin type and if
the job is of time-sharing origin (TX0T) and output is
available, it is rolled out.

Check for device checkpoint requests and call 1CK if any
are found. '

Check for device initialization requests and call CMS if
any are found.

ALL timed/event rollout jobs are made eligible for
scheduling when the desired event has occurred or if
their time has expired.

Check for accumulator overflow and call routine OAU to
update the PROFILa file accordingly.

A flowchart of the main routine of 1SP is shown in figure 6-3.

60454300 B - 6-15

4
CET

AJP

adjust job
priorities

check event
table

NS

¥

\ /

MS

/ AN
N
set priority [AN
aging control (\\ °ﬁﬁﬁ$?“ j/)
/ AN
N

\ J

cov
ATI D

“checkpoint

advance time devices

increments

Yy

accumulator no

overflow

Y

adjust file

priorities

NN

/ AFP
< set 1SJ call
into input register

/ POF

\
N =

Figure 6-3. 1SP - Main Program

60454300 A 6-16

The following paragraphs describe several 18P subroutines.

ADJUST JOB PRIORITIES (AJP)

AJP checks for wait response and swapout allowable indicators
Located in word SSCW of the control point area. If any wait
response indicator is set without a corresponding swapout
allowable indicator, the job receives a 2*CMSL times its
specified CM slice to inhibit swapout. If wait response
indicators are left set but the corresponding swapout allowable
indicator is also set, the job will be considered a candidate
for swapout. AJP also checks CM and CPU time slices and adjusts
the job's priority if either of these has been exceeded.

ADVANCE TIME INCREMENTS (ATI)

ATI advances the increment interval associated with the IN
service parameter for each queue type within the job origins.

ADJUST FILE PRIORITIES (AFP)

AFP ages queue files if priority aging is enabled. 1If the time
increment was reset by ATI for the queue type for the origin
type, the queue priority of the file being processed is advanced
by one. In addition, if the time specified for a timed/event
rollout file (TEFT) has expired, the file is converted to a
rollout file (ROFT) and is given the upper bound rollout queue
priority for its origin. When converting from TEFT to ROFT, the
ECS field length is reset in FST byte 2 from the rollout file
system sector.

CHECK EVENT TABLE (CET)

CET matches events from the systems event table with events
specified in TEFT entries. AFP places those TEFTs waiting for
events into a table for CET to read, thus requiring only one
complete scan of the FNT to complete. If events match, the file
ijs converted to a rollout file and given the upper bound rollout
queue priority for its origin type.

CHECK MASS STORAGE (CMS)

CMS determines if a call to'the mass storage subsystem is
necessary. The following criteria are used.

e When its delay (maintained in PFNL+1) has expired and
removable packs are enabled

e When CMS is required to diagnose mass storage error
conditions

e When initializations are pending on a mass storage device

The activation of CMS is made by making a 10S function 32 call
to initiate the mass storage subsystem.

60454300 A o 6-17

If it is necessary to catl 1DS, the scheduler active bit (bit 59
in JSCL+1) is cleared, the scheduler is requested via an RSJM
function, and the 1DS request is written into this PP's input
register and PPR is entered.

CHECK IF CHECKPOINT NEEDED (CDV)

€DV checks the 1CK recall time in JSCL+1 and calls 1CK if it is '
time to issue a checkpoint request and checkpoint requests were
detected by CMS. The call to 1CK is entered into this PP's
input register and PPR is entered after clearing the scheduler
active bit and requesting the scheduler via an RSJM function.

PROCESS OVERFLOW FLAGS (POF)
POF detects accumulator overflow at a control point and if

overflow exists calls:overlay OAU to update the PROFILa file
accordingly.

ADVANCE JOB STATUS - 1AlJ

Routine 1AJ advances the status of an active job. This action
may be caused by one of the following occurrences.

e The job scheduler (1SJ) wants to start a new job just
scheduled to a control point

e Monitor has sensed no activity at a control point
(W and X bits clear)

e DIS or other similar programs wish to process an error
flag or a control statement

The format of the 1AJ call is as follows.

59 41 35 23 0
RA +1 1AJ O} cp fn params

cp Control point number

fn Function number 0 through 5

params Parameters depending upon the function number
For function number 0, TCS can be substituted for a 1AJ call.

For function numbers 4 and 5, the call must be made to TCS
rather than 1AJ.

60454300 B 6-18

The parameters for each function number are as follows.

fn Bits . Description
0 23-12 Equal to 1 if set by 1AJ during DMP=
processing in case of recall
11-0 Equal to 1 if set by 1RO upon completion of

DMP= processing; set to 2 by DIS for 8SJ=
and DMP= processing

1 23-12 - lero
11-0 Address of input file from 1SJ
2 - 23-3 Zero
2 Set indicates control statement in MS1W
" (from DIS)
1 ~ Set indicates return error message to MS2W

with no error flag on invalid control
statement (from DIS)

0 Set indicates read statement and stop prior
to execute (RSS indicator)

3 23-0 Zero (from other PP programs)

4 23-18 Subfunction number for reading control
' statement.
0 Advance pointers
1 Read only if not a lLocal file load,
do not advance pointers
2 Set bit 17 in argument count if
Local file load; do not advance
pointers
4x If parameters to be cracked in
‘ product set format
17-0 Address to read/write control statement

from/to
5 23-18 Zero
17-0 Address from which to read control statement

(for control statement read and execute)

The programs called by 1AJ are as follows.

Program Description
1C4 Complete job
1RI ‘DMP= rollin ’
1RO Rollout job, normal rollout and DMP= rollout
CIlo Coamplete special files on errors
DMP ‘ Exchange package dump (for certain error
' flags)
0AU Update PROFILa file
ODF brop file

60454300 A 6-19

The common direct Location assignments are:

Name

AB
CN
FS
EP
SP
0T
EF
RO
FA
CwW
RF
SC

In general, 1AJ

advance it.

Value

20-24
25-31
32-36
37
40-44
45
46
47
57
60-64
65
67

is ¢

Description

Assembly buffer

CM word buffer

FST entry

Entry point pointer
‘Statement pointer
Job origin type
Error flag

Rollout flag

Address of FST entry
Library control word

Reprieve error flag

System control point (SCP)

activity

alied by MTR, 1SJ, or DIS. However, in the
case of special entry point programs 1RO will call 1AJ back after
rolling a job out to DM* and setting up a control point for the
special entry point routine. A special entry point
rolled out, and when it is roltled back in, 1RI calls 1AJ to

Interaction between 1AJ, 1SJ, MTR, 1RI, and 1RO is

in figure 6-4.

1AJ uses the following overlays.

Overlay

3AA
3AB
TCS
LDR
3AC
3AD
3AE
3AF
3AG6
3AH

The PP memory 1

ayout

Description

Begin job

Process error flag

Translate control statement
Load central program

Search peripheral Llibrary
Search for overlay

Load copy routines

Special entry point processor
Termination processing

Return special user files

is shown in figure 6-5.

job can be

illustrated

Figure 6-6 contains the flowchart of the main routine of 1AJ.

NOTE

Control point area words used by 1AJ are described
in section 2.

60454300 A

If a special entry point is
encountered; then 1RIL and
1RO calls 1AJ.

_ If on input file, 1SJ
calls 1AJ; if a rollout
file, 1SJ calls 1RI.

MTR calls
1AJ to a control
point with activity

Rollin job

If rollout flag is
set, 1AJ calls 1RO

If EOR on input files that is,

no more activity for this job
ar abnormal termination.

Also if origin code greatler

Figure 6-4, 1AJ Interaction

60454300 A

o
1

21

Job advancement Transliate control Absolute CP overlay

0000 statement loader
PP resident
1100

LDR
1AJ main
main program
program 2200

TCS

main 3AD - Search for

1436 overla
1AJ - Preset routines program y

3AA - Begin job
3AB - Process error flag

3AG — Termination

processing
4422 |—— 61z
3AE - Load copy routines TCF - Preset routine -1
5347 1 3AF - Special entry 3AC - Search peripheral 3AE ';ffﬁn‘;g”y
point processor library
3AH - Rpfurn special 3AE -Load copy routine
files 3AF - Special entry
point processor
ODF - Drop files ODF — Drop files

7777

Figure 6-5. 1AJ Major Overlay Memory Layout

60454300 A 6-22

AJS

®_.

v

read control
point status

CM = STSW
CN = JNMW
AB = JCIW

FS = RLPW
T1=EECW
SP = CSPW

CW = SSCW

\

RO = rollout
flag from
AB+2,

v

EF =error
flag from
CM+1

connection
estahlished

clear
connection (SC)

-

read SSOW
(outstanding
connections)

are
requests
outstanding

is
EF=FSET
(forced

yes
RF = T1+1 -
error flags RF=10
v v

*1 Read one CM word

Figure 6-6.

60454300 A

into 5 PP words

no yes
*
SC= SC=7
i’
- Advance Job (Continued)
6-23

FS = X and
W status
from CM+FS

A

OT = origin type
from CN+3

origin cade
undefined

[Als
1

AJS

&)

LM
processor

%1 Is function number from IR+2 > 4 (functions 4 and 5 are TCS

functions)
*2 Protective code.

60454300 A

Figure 6-6.

If an origin code > 4 is not trapped, the
processors will malfunction and the system could crash.

1AJ - Advance Job (Continued)

6-24

processor '
- “defined’

no [< .]
/ stk N\
check for
system control v
point activity

set 1CJ
parameter to 0

set 1CJ
parameter to 1

Y

(A)=1CJ

*1 Only TXOT and MTOT have a processor (RTJX); no processor

exists

60454300 A

for the other origin types.

Figure 6-6. 1AJ - Advance Job (Continued)

6-25

processor
defined

(A)=1R0

*1
set bit 47
in CSPW
w:
get queue
priority
of CP1
*2
set EF to
yes 1R0 parameter
inlR +4
no

* 9

Figure 6-6. 1AJ

60454300 A

set PP

callin to
input register
for this PPU

Ensure empty control statement buffer by indicating EOR.
*2 Is queue priority of job at control point 1 equal to TXPS?
*3 Only TXOT and MTOT have a processor (RTJ);
exists for the other origin types.

- Advance Job (Continued)

no processor

*1
*2
*3
*4
*35
*6

CM = SEPW
CN = SPCW

*1

special request
present

*3

“job
active or rollout
requested

yes

reprieve yes

or error flag

/ 3AF/RCF

~ restore CP fields

AN

Read 1 CM word into 5 PP words.

Is CN=CP entry point name # 0?

Is RO+FS rollout flag + W + X status?
Is RF or EF not = zero?

See description of overlay 3AF.
Function 0 call with n=2.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A

monitor call
(IR+2=10)

-
-

Y

VAR N\

translate
control
i': statement TCS
CSR
7 |
Y
job
es completion

CN+1 hit.
. set

perform
DMP =
processing

rollout
not set
RO=10

*1 This path forces job to be rolled out and 1AJ to drop.
*2 3AF exits via a call to 1RO and drops from PP. '

Figure 6-6. 1AJ = Advance Job (Continued)

60454300 A 6-28

© S

DFM

SSl = yes ’ ‘ / X
job issue diagnostic
_ message
no ‘)

read DBAW clear SPCW

clear RA+1
clear RO
(rollout flag)

set EF to
SYET/PPET

set call name

/ *2
* load 3AE
copy routines
y

f LDR/CLD l

l search »f.or
check / entry point

TN
| &
o
2

message = SPCW

routine found CALL ERROR

yes

access
allowed
no H
set error to set CP processor
PPET;
message = -

SECURE MEMORY,
DUMP DISABLED

| /" amFPSR O\
' ‘ - process DMP =
processor

*1 Bit 59 of DBAW set.]
*2 1AJ drops and this control point aborts.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A 6-29

[/ wma \

begin job /

oPP >
reprieve RF / 3AB \
or error flag error
processor
oPP »{ No
1 4 A
s\
clear
error chectk s'ysternt
control poin
message activity

%2

return
of error
message

*1 Exit to 1CJ if error flag set. ,
*4 Bit 1 of IR+4 not set indicates no return of message.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A

store
" message
into MS2W

—
*1.

set SPCW=0

l

//7 SCP \
check system
control peint
activity
/ *9
/ s\

process
control.
. statement

*1 Turn off any special processor commands.
%*2 Read next control statement and advance the job. If jllegal

control statements abort.

Figure 6-6. 1AJ = Advance Job (Continued)

60454300 A , : 6-31

yes clear error flag
(EF = 0)

reprieve or
error flag

SF.EXIT
processing

statement
huffer empty

@ *3
3AB

/ \
\ error prucessm) yes

processor
defined

no

\d
0PP2| *4

jump to processor

* 1 (SC) bit 2 set.
*2 Processors are defined as follows.

SYOT AJSX
BCOT AJSX
EIOT AJSX
TXOT RTJ
MTOT RTJ

*3 Is this the end of control statements; then terminate
* 4 Calls TCS '

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A

scP

check system
control point
activity

/ 3AFRCF \

restore
control point
fields

%l

processor -~ "0

defined

jump to processor

%1 Only TXOT and MTOT have processor (RTJ) defined; no
processor exist for other job origins.

Figure 6-6. 1AJ - Advance Job (Continued)

60454300 A 6-33

60454300 A

/ aacm\
clear job
advance flag
FN =2
(PR ng \
' process
termination

¥

return to
caller

ScP
activity
qutstanding

Figure 6-6. 1AJ - Advance Job (Continued)

The following paragraphs describe 1AJ subroutines.

BEGIN J0B (3AA)

Routine 3AA initiates job processing at a control point. The
.dayfile messages issued by.3AA_are the following.

JOB CARD ERROR. .
BINARY CARD xxxx SEQUENCE ERROR.
JOB IN NORERUN STATE ON RECOVERY.

The dﬁrect location assignments are defined as follows.

Name Value Description
PP : 60 Pot pointer
TN 61 Terminal number
PA 62 Pot address (2 words)
TT 64 ‘ Terminal table address (2 words)
TA 66 TELEX reference address

The table of processors for 3AA is as follows.

Origin Processor
SYOT BBC
BCOT BBC
EIOT - BBC
"MTOT BMT

A flowchart of 3AA is shown in figure 6-7.

60454300 A 6-35

BJB

get FST address
of input fiie
from IR +4

A
read input /f RJM \

file FNT/FST
entries proper processor

y

legal
job origin

AJS
L X

Y

save queue store control
priority statement pointer
cspPw
Y \4 ‘
clear CP area "
TSCW+1 store
thru CSBW control statement
FST entry
—L y
set infinite
accounting and _ o
profile control set time limit
values contrals
y ¥ :
*1
set input file
FST :ddress set keypunch
into TFSW mode in SNSW

*1 Keypunch mode is passed to 1AJ in the system sector of the
input file :

Figure 6-7. 3AA - Begin Job

60454300 A ' 6-36

store job
sequence number
in RFCW

\

set exit mode
into exchange
package

4

clear FLX
and RAX in
exchange package

)

preset RFL

with values

from job card
FS+1 and FS+2

Y

CMX

/ \
i)

|
set MFL =
machine FL
maximum (FS)

job card FL
(FS+2) #0

set MFL to
job card FL
FS<—FS+2

v

preset RFL
with values
from job card
CN+1 and CN+2

y
/ E6S \

compute machine
FLE maximum

v

set MFL =
machine FLE
maximum (FS)

job card FL
(CN + 2)#(0

set MFL to
job card FLE
CN-<=CN + 2

b_._

store FL‘ control
in FLCW and
ELCW

v

set default
family equipment
in PFCW

»
Figu}é 6-7.

60454300 A

3AA - Begin Job

(continued)

6-37

/ STEm \

set family
activity count

\

set validation
words ALMW,
ACLW and
AACW unlimited

" . . yes set up
Sys ;;“D‘%f‘g'“ | SYSTEMX/SYUI
user identificat_ion
no
multi-terminal 5
MTOT
no "
set validation
validation yes required hit
required (bit 17) for
user identification
~no —F
set user
identification
in UIDW

*1 Validation required bit from SSTL is set as bit of UIDW

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A 6-38

/ DFM \

job card

present issue job card

to dayfile
1

/ DFM

issue accounting
message for
cards read
FL assigned
ys

clear RA,
RA+1, RA+2

O

*1 Job card not present if MTOT.

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A

6-39

/ ATM O\

begin account bieck
FM = ABBF

set accounting
controls in STLW,
SRJW and CPJW

ves message = JOB IN

priority = no
rerun priority

NRPS ON RECOVERY

NO RERUN STATE

message = JOB
CARD ERROR

Figure 6-7.

60454300 A

DFM

convert data
for message

s

\ issue message
y

IN

error

DFM \ [asix]
binary seq / y

3AA - Begin Job (Continued)

BBC

read job cards Jand position lNPlrj-T»tn_E-[“l'ﬁm

/ RIC\

N ot/

i

*1

set track & sector
in FST

change job name
to INPUT

/

Y

*2

set exit
mode = 7007

A

< © return ’

*1 The FNT/FST entry is described in section 2
%*2 For use in the exchange package

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A 6-41

set TELEX
RA and SORT

terminal
number

y

/ stA \
get input pot
pointer
word :

Y

ees O\

enter
control
statemen

A

ETF
enter
terminal
files> FNT

y

RJSM
get
sequence
number

SN TN
A NG

Y

set time limit
= 40, exit
mode = 7007

*1 Read statement from TELEX pot and set up control statement

Figure 6-7. 3AA - Begin Job (Continued)

60454300 A L 6=42

PROCESS ERROR FLAG (3AB)

Routine 3AB,pfoqesses error flags by sending an error message to
the dayfile. In the case of an arithmetic error, a call is made
to DMP to dump the exchange package area.

When these operations are complete, the control statement buffer
_is searched for the control statement EXIT. If this statement
js found, 3AB returns to 1AJ to continue statement processing.
1f an EXIT is not found, control returns to 1AJ to complete the
job processing.

The dayfiLekmes;ages'ére'as follows.

‘:Message. ' Description
TIME LIMIT. ‘ The monitor has detected that
the time Limit for the job has
expired.
CPU ERROR EXIT xx AT The monitor has detected CPU

YYYYYY-. error exit condition at xx
i address yyyyyy.

PP CALL ERROR. The monitor has detected an
error in a CPU request for PP
action.

OPERATOR DROP. The operator has dropped the job.

PROGRAM STOP AT XXXXXX. The monitor detected a program
stop instruction at address
XXXXXXa

SUBSYSTEM ABORTED. A subsystem has aborted and all

user jobs connected to this
subsystem will have this message
sent to their dayfiles and the
SSET error flag set.

JOB STEP LIMIT. The job step SRU Limit has
expired.

ACCOUNT BLOCK LIMIT. The SRU Limit for the account
block has expired.

MONITOR CALL ERROR. An illegal RA+1 call has been
issued.

SYSTEM ABORT.) The job has been aborted with an

SYET error type.

OPERATOR KILL. . The operator has killed the job.
(Same as an operator drop except
no error processing is done.)

SECURE MEMORY, DUMP ZAB attempts to produce an
DISABLED. exchange package dump, but
program has secure memory status.

60454300 A - 6-43

SPECIAL REQUEST
PROCESSING ERROR.

REPRIEVE IMPOSSIBLE =

BAD CHECKSUM.

JOB REPRIEVED.

The table of processors for 3AB

Origin Processor
SYOT EBC
BCOT EBC
EIOT EBC
TXOT EBC
MTOT EBC

Overlay 3AB is flowcharted

60454300 A

3AB attempts to produce an
exchange package dump, but a
program is a special call
processor (SPCW set).

The checksum does not match
checksum taken when reprieve
control set up.

Job is reprieved after an error.
A second message is issued to
describe the conditions under
which the job was reprieved.

is as follows.

in figure 6-8.

60454300 A

valid
error type
(<MXET)

o / mxem o\

hang system/

J

y

‘/,CEFM \

< clear error flagy‘H set EF = SYET

restore
sense switches

y

clear pause bit
from SNSW

Figure 6-8. 3AB - Process Error Flag

Figure 6-8.

60454300 A

system error
(SYET)

operator kill
(OKET)

reprieve
exchange
address

error exit
address

rerun
error type
(RRET)

CMF \

/[|
& complete files /

o

/ CER \

check error
return

Y

processor
defined

jump to
processor

3AB - Process Error Flag (Continued)

*1
/s \

search for
exit

error
msg. to be
issued

*2

DFM \

issue
error
message

J

processor

*1 Look for exit statement.
x2 Refer to the EREXIT macro, section 6, volume 2, of the NOS
Reference Manual for a description of error flags.

Figure 6-8. 3AB - Process Error Flag (Continued)

60454300 A - 647

* 1 CPU ERROR EXIT (mode) AT <{address).
*2 PROGRAM STOP AT (address).

read

(RA)

A

y

convert
mode and
address —
display code

y *q

DFM

S

issue
error
message

Figure 6-8.

60454300 A

read

exchange

area

v

convert
address

\

*2

DFM

AN

issue error
message

/

/
\

!

3AB - Process Error Flag (Continued)

read
(RA+1)

replace zeros
with spaces

convert
data

validation
limit

increase = DFIN

2

Vs

TL

increase limit
function RLIT

\

/ oEem

N\

issue
\ (RA+1) - j
dayfile

Y

return

*1 Let user finish error processing

Figure 6-8.

60454300 A

Py
v o

Y

return

if possible.

3AB - Process Error Flag (Continued)

system
origin
(SYaT)

DMP
required

return via
EBCX

DIS call pup
yes ’ . extra data
(1AJ function from PPDW

2)

VAT
S =/

empty statement
buffer, set EOR
if CSPW

’ rerun return via
(RRET) AJSX
) no

tie sharing
(TXO0T)

*1

write logoff

byte (0004)

into message
buffer (MS1W)

.

return via
EBCX

*1 Time sharing processings sends contents of message buffer to
terminal. Since message buffer has log off byte in it,
terminal will be logged off.

*2 Control point area PPDW contains the address of the control
point area to dump and number of words to dump.

Figure 6-8. Process Error Flag (Continued)

60454300 A 6-50

validation
limit

force

charge
required
in UIDW

vy e

/A \

‘ convert SRU
accumulation
function ABIF

'l

message =
account block JOB STEP
LIMIT

limit

message =

ACCOUNT
BLOCK
LIMIT

<

Y

-/ DFM

T\
& e j
| I -

- set increment
=DFIN

request SRU return via
increment EBCX
functlon RLIS

Figure 6-8. Process Error Flag (Continued)

60454300 A

TRANSLATE CONTROL STATEMENT (TCS)

TCS translates control statements in the following manner.

1.

Reads statement from one of the following.

e Control statement in the control point area
e Message buffer for DIS type programs
e Central memory Location for an executing program

Programs loaded from the system have their parameters
processed with operating system separator equivalences,
unless a *SC SYSEDIT directive was used when entering
the program into the system.

Local file program loads have their parameters processed
with product set separator equivalences, as do all
programs with *SC specifications, unless a slash (/) is
prefixed to the program name.

For NOS equivalences, delete all embedded spaces, up to
the termination character (a period or right
parenthesis). Any characters not in the standard
FORTRAN set (for example, > < ;) are not allowed in the
statement. They may be used in a comment. Arguments
are processed such that the separator character is the
lower six bits of the argument.

For product set equivalences, separator characters are
+-/=,(%. Blanks are treated as separators. AlLl
special characters are treated as 4-bit codes in the
lower six bits of the argument.

Searches a List of special control statement names for
a match with the statement being processed. These
special names are CTIME, RTIME, and STIME.

Extracts the first seven or Lless characters from the
statement up to a separator character and searches the
file name table for a file assigned to the control
point with this name. If found, the field length is
restored if it is different from the amount set by the
Last RFL statement or macro. If the running or nominal
field Length is zero, a system defined field Length is
used as the initial field length. If such a file is
found on a mass storage device and is in absolute
format, the loader is called to lLoad and execute it.

If the file does not reside on mass storage, the job is
aborted. If the file is in relocatable format, control
is transferred to the CDC CYBER Loader to lLoad and
execute the program. The arguments for the program
call are extracted from the control statement and
stored in the argument region of the job communication
area, (RA+2 through RA+n). The CPU is requested to
begin execution of the program.

60454300 A 6-52

5. Searches the central library (CLD) for a program with
the name on the control statement. If such a program
is found. and contains an RFL= or MFL= special entry
point, the field length is set accordingly. Otherwise
the field length is set as described in step 4. The
requested program is loaded and executed with arguments
stored as described previously. ‘

6. If the statement name is a three-character name, the
first of which is alphabetical searches the PP Library
(PLD) for a program of this name. If found, places
this name with up to two octal arguments as a PP
program request and exits to the program. No change
is made in the job field Length. This type of request
is valid from system origin only or if the caller has
system origin privileges and the system is in DEBUG
mode.

7. 1I1f none of the preceding steps are successful, the
statement is declared jtlegal and the job is aborted.

ALL control statements, with the exception of CTIME, RTIME, STIME
and *comment statements, cause some routine to be lLoaded or the
job to abort.

The following messages are issued by TCS.

Message
CONTROL STATEMENT LIMIT.
BUFFER ARG. ERROR.
TCS ILLEGAL REGQUEST.
IMPROPER VALIDATION.

FORMAT ERROR ON CONTROL
CARD. '

SECURE MEMORY,
DISABLED.

DUMP

TOO MANY ARGUMENTS.

FL TOO SHORT FOR
PROGRAM.

60454300 A

Description

Control statements exceed
control statement validation
Limit.

CM address in call is not within
the job's field length.

TCS called with an
request.

illegal

A validation program (with VAL=)
is required.

An error has been detected in
the format of the control
statement.

A DMP= processor is called
following a job step that
requires secure memory.

The number of arguments on the

control statement exceeds the
amount allowed.

54 table MINFL is larger than FL.

6-53

FL BEYOND MFL. Request FL exceeds MFL.

ILLEGAL CONTROL CARD. The control statement could not
be jidentified by TCS.

A flowchart of TCS is illustrated in figure 6-9.

60454300 A 6-54

INT \

/ : “ write statement
: initialize / to MS1W

: _]
=)

“control L ups L
statement unpack
statement

read

- no

/ RNC O\ ~Possibie~
. continuation @
read next . control
statement ’ stateme
v ' ')
/oL 0\ /AW O\
check - assemble
statement limit keyword

not end of
statements

Figure 6-9. TCS - Main Routine

60454300 A 6-55

comment
statement

/ IPL \
s comment
initialize statement
program load
/seL \
search validation
central library required

message =
ILLEGAL
CONTROL CARD

Figure 6-9. TCS - Main Routine (Continued)

60454300 A

60454300 A

search

/-
& central Ilhfaty
[/
-\

-check
user access

NG % \/

allowed
system
privileges

yes

CSDJ or
engineering

»{ Yes

VAR

search
perlpheral libwary

no

SSF

search for
special format

Y

IPL

SN N

initialize
program load

)
)

no

local
program
request

yes

SPF

<

search for
program file

message =
ILLEGAL
CONTROL CARD

ERR1

Figure 6-9. TCS - Main Routine (Continued)

The following paragraphs describe the major portions of TCS.

ISSUE STATEMENT TO DAYFILE (IST)

IST issues the control statement and error messages, if any, to
the dayfile, updates the control statement pointers in CSPW and
advances the job. IST is flowcharted in figure 6-10.

SEARCH FOR SPECIAL FORMAT (SSF)

SSF processes the control statements CTIME, RTIME, and STIME and
issues the CPU time (control point area word CPTW), real time
(word RTCL) or SRU accumulation (word SRUW) to the dayfile.
This is done in 1AJ rather than by a CPU program to eliminate
any system overhead in these values.

SEARCH FOR PROGRAM FILE (SPF)

SPF determines if the program requested is local to the control
point. SPF exits to subroutine SSF if the file is present.
SEARCH CENTRAL LIBRARY (SCL)

SCL searches the CLD and RCL in an attempt to find the desired

program and causes it to be brought to the control point., SCL
is flowcharted in figure 6-11.

60454300 A 6-58

SDM=
present

control
card

messzage code
= NMSN

i

DEM \

issue control '
card to \
dayfile

Figure 6-10.

60454300 A

DFM \

issue error /

message

<

invalid
DMP=
call

CEFM \
set PRET
error flag

store new
- CSPwW

I

PPR

IST - Issyue Statement

> IST6

program
loaded

store new
CSPW

PPU
program

RA+1 yes

TCS request

RA+1
TCS call

Y

/ Iacm O\ / JACM OPPM \

clear joh advance clear job advaince drop PP
function = 0 funetion = 2
»{ 15T 4 w

Figure 6-10. IST - Issue Statement (Continued)

60454300 A

clear FST
dd
address (EA)

\

/ LDR/GLD \
search
<\\ CLD J/)

\

*1

continuation w/o
ARG =

normal
case

DMP =

-y no : no
relocatable ::;hsystem : | clear
routine (TO) = 2 SPCW
: {
/ osE\
check special return
entry points

*1 Test modified for given cases

Figure 6-11, SCL - Search Central Library

60454300 A

Figure 6-11.

60454300 A

possible
continuation con-
trol state-
ment;

yes

operating
system
format

|

set system
call for

- CALL -
(TO)=1

special
format

| SSC

SCL - Search Central Library (Continued)

6-62

read FLCW

clear one step
RFL flag

*1

yes

MFL =
defined
' no

FL

o : no
specitie BGP
in CLD Use FL
for requested

FL

preset
requested FL
to value from
CLD

RFL =
defined

1% NFL < MFL

7<

Use NFL
for requested
FL

requested
FL >MFL

message =
FL heyond |
MFL

* 1 Definitions
MFL = byte 0 of FLCW
NFL = byte 1 of FLCW
FL = current FL, byte & of STSW

Figure 6-11. SCL - Search Central Library (Continued)

60454300 A 6-63

validation yes

reguired

yes

read library
control
word

Figure 6-11. SCL - Search Central Library (Continued)

60454300 A

64

BEGIN CENTRAL PROGRAM (BCP)

BCP obtains storage for the program, initializes the job
communication area with the cracked arguments (RA+2 through
RA+62B), the number of arguments (RA+ACTR), the control
statement (RA+CCDR), the program name (RA+PGNR), the exchange

" package, and sets FLCW for this job step. The program is loaded
into the field lLength and the job step begun with the RLMM
monitor function. BCP is flowcharted in figure 6-12.

ASSEMBLE KEYWORD (AKW)

AKW extracts the program name from the control statement.
Appropriate initializations are done for / (use NOS arguments), $
(Load from system rather than local file), and * (comment) first
characters. Job control lLanguage tags are ignored.

ENTER ARGUMENTS (ARG)

ARG processes the arguments on the control statement and sets
them in RA+ARGR (RA+2) through RA+62B. The arguments are
terminated by a word of binary zeros. Arguments are cracked in
operating system format or product set format as directed by the
characteristics of the Load. If more than 60B arguments are
present, the job is aborted with the diagnostic TOO MANY
ARGUMENTS. No argument processing is done if the program has an
ARG= entry point. : : :

60454300 A 6-65

RS

/[|
=)

DIS call
(IR+2)=2

statement after

Y

clear program
name from
RA + PGNR

loader call

ASN

/ d \
=

\4

clear RSS flag
from IR +4

set RSS
and DIS bits
for loading

€

A

O

60454300 A

Figure 6-12.

=

L 2

store program
name in
RA + PGNR

-

i
LDR/LCP

load central
program

load error

<

BCP - Begin Central Program

ARG

enter
arguments

]
table check

\J”

MINFL
in 54 tahle

message =
FL too short ' skip sequence
for program ' number

no —
one step yes clear one step BCP
RFL fl , RFL flag
“ in FLCW 10
no

-,
-

\] B o
X\ | - 3AF/TCA

clear exchange . : | transfer control
package point area fields

/ 3AF/SDP \

start DMP =
program

DMP =
progression on
RA +1 call

parameter
block

set argument count
(RA +ACTR) stare
control statement
(RA+CCDR)

Figure 6-12. BCP - Begin Central Program (Continued)

60454300 A 6-67

BCP
10

set up for OAU
call by read of
JNMW, SRUW,
FPFW

accounting
accumulator
overflow

s

0AU

process overflo

w

\
"/

1o
"‘ﬁ
store SEPW
DMP = — z:ﬁ:d1f‘l:‘ag
no
\r .
store CSPW

Figure 6-12.

60454300 A

user

selected

file privacy

yes

call
3JAH

no operator
supplied

equipment

MS or

f DEQM

AN

/

allocatable - release
equipment
- yes J

\ i

clear eguipment
from OAEW

BCP - Begin Central Program (Continued)

68

no

i

clear SSM status

LDR=
or SLDR = to he
loaded

yes

set SSM status

call or sub-
syste

previous step
secure

RSS
(IR+4) =1

/ RLMM \
start job step
yes function = RLJS

Yy IST

/ ST \

\ clear memory/

FL increase

SSM =
entry point

Figure 6-12. BCP - Begin Central Program (Continued)

60454300 A | . 6-69

C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>